Spinal Muscular Atrophy: Diagnosis dan Tatalaksana

Natasha Vinita Wardoyo, Elina -

Abstract

Spinal muscular atrophy (SMA) adalah kelainan autosomal resesif langka akibat mutasi atau hilangnya gen survival motor neuron 1 (SMN1) pada kromosom 5q13. Insidensi global SMA diperkirakan 1:11.000 kelahiran hidup. Manifestasi klinis berupa kelemahan otot progresif dan penurunan tonus otot yang berhubungan dengan destruksi unit motorik alfa lower motor neuron. Gejala klinis dan prognosis lebih berat jika usia onset gejala makin dini. Sampai saat ini, sebagian besar terapi bersifat suportif. Spektrum fenotipik yang kompleks pada SMA dapat menyebabkan gangguan fungsional serta disabilitas yang membutuhkan penanganan multidisiplin.

Spinal muscular atrophy (SMA) is an inherited autosomal recessive disease caused by mutation or deletion of the survival motor neuron 1 gene (SMN1) on chromosome 5q13. The global incidence of SMA was estimated at 1:11.000 live births. SMA manifests clinically as progressive muscle weakness and decreasing muscle tone due to the destruction of alpha motor units on the lower motor neurons. Clinical symptoms and prognosis were worse for patients with earlier age of onset. To date, definitive treatments were limited, with most treatments are supportive. A complex phenotypic spectrum on SMA could lead to functional impairment and disability requiring multidisciplinary care.

Full Text:

PDF

References

Burr P, Reddivari AKR. Spinal Muscle Atrophy. StatPearls Publishing; 2021 [cited 2021 Sep 21]. Available from: https://www.ncbi.nlm.nih.gov/ books/NBK560687/

Ross LF, Kwon JM. Spinal Muscular Atrophy: Past, Present, and Future. Neoreviews. 2019;20(8):e437–51.

Schorling DC, Pechmann A, Kirschner J. Advances in Treatment of Spinal Muscular Atrophy – New Phenotypes, New Challenges, New Implications for Care. J Neuromuscul Dis. 2020;7(1):1–13.

Arnold WD, Kassar D, Kissel JT. Spinal Muscular Atrophy: Diagnosis and Management in a New Therapeutic Era. Muscle Nerve. 2015;51(2):157–67.

Pierzchlewicz K, Kępa I, Podogrodzki J, Kotulska K. Spinal Muscular Atrophy: The Use of Functional Motor Scales in the Era of Disease-Modifying Treatment. Child Neurol Open. 2021;8(1):1-9.

Canadian Agency for Drugs and Technologies in Health. Clinical Features, Epidemiology, Natural History, and Management of Spinal Muscular Atrophy [Internet]; 2018 [cited 2021 Sep 27]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK533981/

Chen T-H. New and Developing Therapies in Spinal Muscular Atrophy: From Genotype to Phenotype to Treatment and Where Do We Stand? Int J Mol Sci. 2020;21(9):3297.

Harding BN, Kariya S, Monani UR, Chung WK, Benton M, Yum SW, et al. Spectrum of Neuropathophysiology in Spinal Muscular Atrophy Type I. J Neuropathol Exp Neurol. 2015;74(1):15–24.

Awano T, Kim J-K, Monani UR. Spinal Muscular Atrophy: Journeying From Bench to Bedside. Neurotherapeutics. 2014;11(4):786–95.

Keinath MC, Prior DE, Prior TW. Spinal Muscular Atrophy: Mutations, Testing, and Clinical Relevance. Appl Clin Genet. 2021 ;14:11–25.

Mills KR. The basics of electromyography. J Neurol. Neurosurg. Psychiatr. 2005;76(suppl 2):ii32–5.

Sultan HE, El-Emary WS. Sensory changes in pediatric patients with spinal muscular atrophy: an electrophysiologic study. Egypt Rheumatol Rehabil. 2016;43(1):1–6.

Bartels B, Montes J, van der Pol WL, de Groot JF. Physical exercise training for type 3 spinal muscular atrophy. Cochrane Database Syst Rev. 2019 Mar 1;2019(3):CD012120.

Lewelt A, Krosschell KJ, Stoddard GJ, Weng C, Xue M, Marcus RL, et al. Resistance Strength Training Exercise in Children with Spinal Muscular Atrophy. Muscle Nerve. 2015 ;52(4):559–67.

Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017;377(18):1713–22.

Mahajan R. Onasemnogene Abeparvovec for Spinal Muscular Atrophy: The Costlier Drug Ever. Int J Appl Basic Med Res. 2019;9(3):127–8.

Refbacks

  • There are currently no refbacks.