Struktur dan Regulasi Connexin43 dalam Komunikasi Antar Sel Otot Jantung

Fransisca Chondro

Abstract

Jantung memiliki kerja yang sangat kompleks. Salah satu hal yang memungkinkan jantung berfungsi baik adalah komunikasi antar sel. Di dalam jantung, komunikasi antar sel otot jantung terjalin antara lain melalui kanal gap junction. Kanal gap junction terbentuk dari dua hemichannels atau connexon, masing-masing connexon tersusun dari 6 molekul connexin. Kanal gap junction berperan penting dalam proses konduksi impuls listrik, melalui kanal ini terjadi penghantaran ion dan solut kecil. Pengaturan komunikasi antar sel dapat dipengaruhi juga oleh interaksi connexin dan protein seperti fosfatase dan kinase, protein struktural (seperti zona occludens-1), dan mikrotubulus. Dalam makalah ini akan dibahas protein connexin 43 penyusun gap junction otot jantung, struktur dan regulasinya dalam kaitan dengan komunikasi antarsel.

Heart is a very complex organ. In the heart, communication between myocyte was conducted through gap junction canal. This canal is formed by 2 hemichannels, connexon, and each connexon consists of 6 molecules of connexin. Gap junction canal maintain the conduction of electrical impulse and the ion and small solute is transferred within this canal. Communications between myocyte is affected by the interaction between connexin and other protein, e.g. phosphatase, kinase, structural protein (zona occludens-1) and microtubule. In this paper, the main protein of myocyte’s gap junction, connexin43, will be discussed regarding the structure and regulation in the communication between myocyte.

Full Text:

PDF

References

Tirziu D, Giordano F, Simons M. Cell comunications in the heart. Circulation. 2010;122:928-37.

Sherwood L. Human Physiology From Cells to Systems. 7th ed. Canada: Nelson Education Ltd; 2010.

Silverthorn DE. Human Physiology An Integrated Approach. 3rd ed. San Fransisco: Pearson Education; 2004.

Aaronson PI, Ward JPT. At A Glance Sistem Kardiovaskular. Edisi 3. Jakarta: Penerbit Erlangga; 2007.

Matthew GG. Cellular Physiology of Nerve and Muscle. 4th ed. Malden : Blackwell Publishing; 2003.

Veen TAB, Rijen HVM, Opthof T. Cardiac gap junction channels: modulation of expression and channel properties. Cardiovascular Research. 2001;51:217-29.

Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS. Review : Connexins : a myriad of functions extending beyond assembly of gap junction channels. Cell Communication and Signaling. 2009;7(4).

Bedner P, Niessen H, Odematt B, Kretz M, Willecke K, Harz H. Selective permeability of different connexin channels to the second messenger cyclic AMP. The Journal of Biological Chemistry. 2006;281(10):6673-81.

Hesketh GG, Eyk JEV, Tomaselli GF. Mechanisms of Gap Junction Traffic in Health and Disease. J Cardiovasc Pharmacol. October 2009;54(4):263-72.

Sohl G, Willecke K. Review : Gap junction and the connexin protein family. Cardiovascular Research. 2004;62:228-32.

Liu F, Arce FT, Ramachandran S, Lal R. Nanomechanics of hemichannels conformations : Connexin flexibility underlying channel opening and closing. The Journal of Biological Chemistry. 2006;281(32):23207-17.

Delmar M, Coombs W, Sorgen P, Duffy HS, Taffet SM. Review : Structural bases for chemical regulation of connexin43 channels. Cardiovascular Research. 2004;62:268-75.

Giepmans BNG. Review : Gap junctions and connexin-interacting proteins. Cardiovascular Research. 2004;62:233-45.

Berthoud VM, Minoguw PJ, Laing JG, Beyer EC. Review : Pathways for degradation of connexins and gap junctions. Cardiovascular Research. 2004;62:256-67.

Solan JL, Lampe PD. Connexin 43 phosphorylation – structural changes and biological effects. Biochem J. 2009;419(2):261-72.

Prochnow N, Dermietzel R. Connexons and cell adhesion : a romantic phase. Histochem Cell Biol. 2008;130:71-7.

Saffitz JE, Laing JG, Yamada KA. Connexin expression and turnover : implications for cardiac excitability. Circ. Res. 2000;86:723-8.

Refbacks

  • There are currently no refbacks.