Potential Impact of ChatGPT (Generative Pre-training Transformer)/AI (Artificial Intelligence) Use for Enhancing the Efficiency of Services and Education for Diabetics.
DOI:
https://doi.org/10.55175/cdk.v51i10.1259Keywords:
ChatGPT, diabetes mellitus, education, artificial intelligenceAbstract
ChatGPT (generative pre-training transformer) is an artificial intelligence technology from OpenAI, which functions as a chatbot with human-like conversational capabilities. This emphasizes the potential of ChatGPT in improving health services, such as diabetes mellitus health services. The challenges are factors such as a lack of human resources and low public awareness. ChatGPT integration is proposed to improve the effectiveness of healthcare services, offering diagnostic support, and educational resources for diabetes awareness.
Downloads
References
Garg RK, Urs VL, Agarwal AA, Chaudhary SK, Paliwal V, Kar SK. Exploring the role of ChatGPT in patient care (diagnosis and treatment) and medical research: A systematic review. Health Promot Perspect. 2023;13(3):183-91. DOI:10.34172/hpp.2023.22
Dave T, Athaluri SA, Singh S. ChatGPT in medicine: An overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front Artif Intell. 2023;6:01-05. DOI:10.3389/frai.2023.1169595
Zuliarti WO, Yusuf H, Sarif A. Artificial Intelligence: History and its legal framework in Indonesia. Scholars Internat J Law, Crime Justice. 2022;5(6):191-6. DOI:10.36348/sijlcj.2022.v05i06.002
Shahsavar Y, Choudhury A. User intentions to use ChatGPT for self-diagnosis and health-related purposes: Cross-sectional survey study. JMIR Hum Factors. 2023;10:1-12 DOI:10.2196/47564
World Health Organization. Diabetes in South East Asia: Burden, Gaps, challenges and ways forward; 2016.
International Diabetes Federation. Diabetes around the world in 2021 [Internet]. 2022. Available from www.diabetesatlas.org
International Diabetes Federation. Diabetes in South East Asia-2021 [Internet]. Available from https://diabetesatlas.org/idfawp/resource-files/2021/11/IDF-Atlas-Factsheet-2021_SEA.pdf
Riset Kesehatan Dasar (Riskesdas). Badan Penelitian dan Pengembangan Kesehatan Kementerian RI tahun 2018; 2018.
Direktorat Pencegahan Pengendalian Penyakit Tidak Menular (P2PTM). Laporan Akuntabilitas Kinerja Tahun 2022; 2022.
Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc J. 2021;8(2):e188-e194. DOI:10.7861/fhj.2021-0095
Jin X, Cai A, Xu T, Zhang X. Artificial intelligence biosensors for continuous glucose monitoring. Interdisciplinary Materials. 2023;2(2):290-307. DOI:10.1002/idm2.12069
Ellahham S. Artificial intelligence: The future for diabetes care. Am J Med. 2020;133(8):895-900. DOI:10.1016/j.amjmed.2020.03.033
American Diabetes Association. Microvascular complications and foot care: Standards of medical care in diabetes; 2021.
Jariyah TA, Mahfud MI, Sofie M, Tinggi S, Semarang IK. Analisis implementasi aplikasi sistem telemedicine “my glucose” pada masyarakat di wilayah Gunungpati Semarang. Jurnal Pengembangan Rekayasa dan Teknologi. 2022;6(2):40-8.
Huang C, Chen L, Huang H, Cai Q, Lin R, Wu X, et al. Evaluate the accuracy of ChatGPT’s responses to diabetes questions and misconceptions. J Transl Med. 2023;21(502):1-4. DOI:10.1186/s12967-023-04354-6
Sng GGR, Tung JYM, Lim DYZ, Bee YM. Potential and pitfalls of ChatGPT and natural-language artificial intelligence models for diabetes education. Diabetes Care. 2023;46(5):e103-e105. DOI:10.2337/dc23-0197
Sharma S, Pajai S, Prasad R, Wanjari MB, Munjewar PK, Sharma R, et al. A critical review of chatgpt as a potential substitute for diabetes educators. Cureus. Published online May 1, 2023;15(5):1-6. DOI:10.7759/cureus.38380
Huang J, Yeung AM, Kerr D, Klonoff DC. Using ChatGPT to predict the future of diabetes technology. J Diabetes Sci Technol. 2023;17(3):853-4. DOI:10.1177/19322968231161095
Eysenbach G. The Role of ChatGPT, generative language models, and artificial intelligence in medical education: A conversation with ChatGPT and a call for papers. JMIR Med Educ. 2023;9:e46885. DOI:10.2196/46885
Jeyaraman M, K SP, Jeyaraman N, Nallakumarasamy A, Yadav S, Bondili SK. ChatGPT in medical education and research: A boon or a bane? Cureus;15(8):1-7. DOI:10.7759/cureus.44316
Temsah MH, Aljamaan F, Malki KH, Alhasan K, Altamimi I, Aljarbou R, et al. ChatGPT and the future of digital health: A study on healthcare workers’ perceptions and expectations. Healthcare. 2023;11(13):1812. DOI:10.3390/healthcare11131812
Hulman A, Dollerup OL, Mortensen JF, Fenech ME, Norman K, Støvring H, et al. ChatGPT- versus human-generated answers to frequently asked questions about diabetes: A turing test-inspired survey among employees of a Danish diabetes center. PLoS One. 2023;18(8):e0290773. DOI:10.1371/journal.pone.0290773
Li J, Dada A, Puladi B, Kleesiek J, Egger J. ChatGPT in healthcare: A taxonomy and systematic review. Comput Methods Programs Biomed. 2024;245:108013. DOI:10.1016/j.cmpb.2024.108013
Jeyaraman M, Ramasubramanian S, Balaji S, Jeyaraman N, Nallakumarasamy A, Sharma S. ChatGPT in action: Harnessing artificial intelligence potential and addressing ethical challenges in medicine, education, and scientific research. World J Methodol. 2023;13(4):170-8. DOI:10.5662/wjm.v13.i4.170
Singh J, Sillerud B, Singh A. Artificial intelligence, chatbots and ChatGPT in healthcare-narrative review of historical evolution, current application, and change management approach to increase adoption. J Med Artif Intell. 2023;6:1-15. DOI:10.21037/jmai-23-92
Liu J, Wang C, Liu S. Utility of ChatGPT in clinical practice. J Med Internet Res. 2023;25:e48568. DOI:10.2196/48568
Srivastav S, Chandrakar R, Gupta S, Babhulkar V, Agrawal S, Jaiswal A, et al. ChatGPT in Radiology: The advantages and limitations of artificial intelligence for medical imaging diagnosis. Cureus. 2023;15(7):1-8. DOI:10.7759/cureus.41435
Khan RA, Jawaid M, Khan AR, Sajjad M. ChatGPT - Reshaping medical education and clinical management. Pak J Med Sci. 2023;39(2):605-7. DOI:10.12669/pjms.39.2.7653
Alanzi TM. Impact of ChatGPT on teleconsultants in healthcare: Perceptions of healthcare experts in Saudi Arabia. J Multidiscip Healthc. 2023;16:2309-21. DOI:10.2147/JMDH.S419847
Yusriadi Y, Rusnaedi R, Siregar NA, Megawati S, Sakkir G. Implementation of artificial intelligence in Indonesia. Internat J Data Network Sc. 2023;7(1):283-94. DOI:10.5267/j.ijdns.2022.10.005
Asante A, Cheng Q, Susilo D, Satrya A, Haemmerli M, Fattah RA, et al. The benefits and burden of health financing in Indonesia: analyses of nationally representative cross-sectional data. Lancet Glob Health. 2023;11(5):e770-e780. DOI:10.1016/S2214-109X(23)00064-5
Rintyarna BS, Sasmiyanto, Insantuan OD, Widiawati I, Purwoko RY. Telehealth in remote areas: A new artificial intelligence-based model. Internat J Sci Soc. 2023;5(4):243-54. DOI:10.54783/ijsoc.v5i4.782
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Eric Septian Prawira, Nurul Hikmah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.