Effectiveness of mRNA-based Influenza Vaccines in Enhancing Immunity and Their Potential to Protect Children from Pneumonia Risk

Analysis

Authors

  • Bryan Wijaya Student of Bachelor of Medicine Program, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
  • Fiona Valencia Setiawan Student of Bachelor of Medicine Program, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
  • Yohanes Firmansyah Department of Physiology, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia

DOI:

https://doi.org/10.55175/cdk.v52i6.1619

Keywords:

Vaccine, mRNA vaccine, influenza virus

Abstract

Influenza viruses have posed a global threat since the 19th century, presenting serious challenges and threats to public health worldwide. Influenza viruses are among the major seasonal outbreaks impacting health and the economy yearly. Numerous new strains emerge over time due to the antigenic drift of influenza viruses, which undergo mutations. Therefore, vaccines and medical technologies continuously need innovative approaches to stimulate immune responses effectively. mRNA-based influenza vaccines are potentially more effective because of the inclusion of a broader range of antigens that can enhance cellular immunity or expand protection beyond just hemagglutinin (HA) and neuraminidase (NA), they can incorporate more than four antigens (HA) in a single formulation, offering advantages in effectiveness, safety, and rapid large-scale production. mRNA-based influenza vaccines hold significant potential and are expected to benefit children due to their various advantages.

Downloads

Download data is not yet available.

References

Rcheulishvili N, Papukashvili D, Liu C, Ji Y, He Y, Wang PG. Promising strategy for developing mRNA-based universal influenza virus vaccine for human population, poultry, and pigs– focus on the bigger picture. Front Immunol. 2022;13:1025884. DOI: 10.3389/fimmu.2022.1025884.

World Health Organization. Influenza (Seasonal) [Internet]. 2023 [cited 2024 Aug 7]. Available from: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)

O’Leary ST, Campbell JD, Ardura MI, Banerjee R, Bryant KA, Caserta MT, et al. Recommendations for prevention and control of influenza in children, 2023–2024. Pediatrics. 2023;152(4):e2023063773. DOI: 10.1542/peds.2023-063773.

Rothberg MB, Haessler SD, Brown RB. Complications of viral influenza. Am J Med. 2008;121(4):258–64. DOI: 10.1016/j.amjmed.2007.10.040.

Torres A, Cilloniz C, Niederman MS, Menendez R, Chalmers JD, Wunderink RG, et al. Pneumonia. Nat Rev Dis Primers. 2021;7(1):25. DOI: 10.1038/s41572-021-00259-0.

Ebeledike C, Ahmad T. Pediatric pneumonia [Internet]. 2024. Available from: https://pubmed.ncbi.nlm.nih.gov/30725625/.

Hansen CL, Chaves SS, Demont C, Viboud C. Mortality associated with influenza and respiratory syncytial virus in the US, 1999-2018. JAMA Netw Open. 2022;5(2):e220527. DOI: 10.1001/jamanetworkopen.2022.0527.

Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med. 2014;6(6):708–20. DOI: 10.1002/emmm.201403876.

Vazquez ME, Mesias AC, Acuna L, Spangler J, Zabala B, Parodi C, et al. Exploring the performance of Escherichia coli outer membrane vesicles as a tool for vaccine development against Chagas disease. Mem Inst Oswaldo Cruz. 2023;118:e220263. DOI: 10.1590/0074-02760220263.

Sahin U, Kariko K, Tureci O. mRNA-based therapeutics — Developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80. DOI: 10.1038/nrd4278.

Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct Target Ther. 2023;8(1):365. DOI: 10.1038/s41392-023-01579-1.

Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines — A new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79. DOI: 10.1038/nrd.2017.243.

Rockman S, Laurie K, Ong C, Rajaram S, McGovern I, Tran V, et al. Cell-based manufacturing technology increases antigenic match of influenza vaccine and results in improved effectiveness. Vaccines (Basel). 2022;11(1):52. DOI: 10.3390/vaccines11010052.

Scorza F, Pardi N. New kids on the block: RNA-based influenza virus vaccines. Vaccines (Basel). 2018;6(2):20. DOI: 10.3390/vaccines6020020.

Zhuang X, Qi Y, Wang M, Yu N, Nan F, Zhang H, et al. mRNA vaccines encoding the ha protein of influenza a h1n1 virus delivered by cationic lipid nanoparticles induce protective immune responses in mice. Vaccines (Basel). 2020;8(1):123. DOI: 10.3390/vaccines8010123.

Reina J. The new generation of messenger RNA (mRNA) vaccines against influenza. Enferm Infecc Microbiol Clin (Engl Ed). 2023;41(5):301–4. DOI: 10.1016/j.eimce.2022.07.006.

Zhang H, Wang L, Compans R, Wang BZ. Universal influenza vaccines, a dream to be realized soon. Viruses 2014;6(5):1974–91. DOI: 10.3390/v6051974.

Ebrahimi SM, Tebianian M. Influenza A viruses: Why focusing on M2e-based universal vaccines. Virus Genes. 2011;42(1):1–8. DOI: 10.1007/s11262-010-0547-7.

Mei L, Song P, Tang Q, Shan K, Tobe RT, Selotlegeng L, et al. Changes in and shortcomings of control strategies, drug stockpiles, and vaccine development during outbreaks of avian influenza A H5N1, H1N1, and H7N9 among humans. Biosci Trends. 2013;7(2):64–76. PMID: 23612075.

Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 2013;368(20):1888–97. DOI: 10.1056/NEJMoa1304459.

Deng L, Wang BZ. A perspective on nanoparticle universal influenza vaccines. ACS Infect Dis. 2018;4(12):1656–65. DOI: 10.1021/acsinfecdis.8b00206.

Uyeki TM, Hui DS, Zambon M, Wentworth DE, Monto AS. Influenza. Lancet 2022;400(10353):693–706. DOI: 10.1016/S0140-6736(22)00982-5.

Abelleira R, Ruano-Ravina A, Lama A, Barbeito G, Toubes ME, Domínguez-Antelo C, et al. Influenza A H1N1 community-acquired pneumonia: Characteristics and risk factors—A case-control study. Can Respir J. 2019;2019:4301039. DOI: 10.1155/2019/4301039.

Viasus D, Marinescu C, Villoslada A, Cordero E, Galvez-Acebal J, Farinas MC, et al. Community-acquired pneumonia during the first post-pandemic influenza season: A prospective, multicentre cohort study. J Infect. 2013;67(3):185–93. DOI: 10.1016/j.jinf.2013.05.006.

Martínez A, Soldevila N, Romero-Tamarit A, Torner N, Godoy P, Rius C, et al. Risk factors associated with severe outcomes in adult hospitalized patients according to influenza type and subtype. PLoS One 2019;14(1):e0210353. DOI: 10.1371/journal.pone.0210353.

Reyes S, Montull B, Martinez R, Cordoba J, Molina JM, Martí V, et al. Risk factors of A/H1N1 etiology in pneumonia and its impact on mortality. Respir Med. 2011;105(9):1404–11. DOI: 10.1016/j.rmed.2011.04.011.

Wong SS, Webby RJ. Traditional and new influenza vaccines. Clin Microbiol Rev. 2013;26(3):476–92. DOI: 10.1128/CMR.00097-12.

Lee S, Ryu JH. Influenza viruses: Innate immunity and mRNA vaccines. Front Immunol. 2021;12:710647. DOI: 10.3389/fimmu.2021.710647.

Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol Ther. 2018;26(2):446–55. DOI: 10.1016/j.ymthe.2017.11.017.

Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 2019;27(4):757–72. DOI: 10.1016/j.ymthe.2019.01.020.

Verbeke R, Hogan MJ, Lore K, Pardi N. Innate immune mechanisms of mRNA vaccines. Immunity 2022;55(11):1993–2005. DOI: 10.1016/j.immuni.2022.10.014.

Heine A, Juranek S, Brossart P. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol Cancer. 2021;20(1):52. DOI: 10.1186/s12943-021-01339-1.

Teijaro JR, Farber DL. COVID-19 vaccines: Modes of immune activation and future challenges. Nat Rev Immunol. 2021;21(4):195–7. DOI: 10.1038/s41577-021-00526-x.

Pardi N, Hogan MJ, Naradikian MS, Parkhouse K, Cain DW, Jones L, et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Experimental Med. 2018;215(6):1571–88. DOI: 10.1084/jem.20171450.

Shannon I, White CL, Murphy A, Qiu X, Treanor JJ, Nayak JL. Differences in the influenza-specific CD4 T cell immunodominance hierarchy and functional potential between children and young adults. Sci Rep. 2019;9(1):791. DOI: 10.1038/s41598-018-37167-5.

Pecetta S, Rappuoli R. mRNA, the beginning of a new influenza vaccine game. Proc Natl Acad Sci USA. 2022;119(50):e2217533119. DOI: 10.1073/pnas.2217533119.

Arevalo CP, Bolton MJ, Le Sage V, Ye N, Furey C, Muramatsu H, et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science. 2022;378(6622):899–904. DOI: 10.1126/science.abm0271.

Russell CA, Fouchier RAM, Ghaswalla P, Park Y, Vicic N, Ananworanich J, et al. Seasonal influenza vaccine performance and the potential benefits of mRNA vaccines. Hum Vaccin Immunother. 2024;20(1):2336357. DOI: 10.1080/21645515.2024.2336357.

Pardi N, Parkhouse K, Kirkpatrick E, McMahon M, Zost SJ, Mui BL, et al. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat Commun. 2018;9(1):3361. DOI: 10.1038/s41467-018-05482-0.

Lutz J, Lazzaro S, Habbeddine M, Schmidt KE, Baumhof P, Mui BL, et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines. 2017;2(1):29. DOI: 10.1038/s41541-017-0032-6.

Freyn AW, Ramos da Silva J, Rosado VC, Bliss CM, Pine M, Mui BL, et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Molecular Therapy 2020;28(7):1569–84. DOI: 10.1016/j.ymthe.2020.04.018.

Godoy P, Soldevila N, Martínez A, Godoy S, Jane M, Torner N, et al. Effectiveness of influenza vaccination and early antiviral treatment in reducing pneumonia risk in severe influenza cases. Vaccines (Basel). 2024;12(2):173. DOI: 10.3390/vaccines12020173.

van de Ven K, Lanfermeijer J, van Dijken H, Muramatsu H, Vilas Boas de Melo C, Lenz S, et al. A universal influenza mRNA vaccine candidate boosts T cell responses and reduces zoonotic influenza virus disease in ferrets. Sci Adv. 2022;8(50):eadc9937. DOI: 10.1126/sciadv.adc9937.

Chivukula S, Plitnik T, Tibbitts T, Karve S, Dias A, Zhang D, et al. Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza. NPJ Vaccines. 2021;6(1):153. DOI: 10.1038/s41541-021-00420-6.

Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Experiment Med. 2011;208(1):181–93. DOI: 10.1084/jem.20101352.

Dong C, Zhu W, Wei L, Kim JK, Ma Y, Kang SM, et al. Enhancing cross-protection against influenza by heterologous sequential immunization with mRNA LNP and protein nanoparticle vaccines. Nat Commun. 2024;15(1):5800. DOI: 10.1038/s41467-024-50087-5.

Rudan I, O’Brien KL, Nair H, Liu L, Theodoratou E, Qazi S, et al. Epidemiology and etiology of childhood pneumonia in 2010: Estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J Glob Health. 2013;3(1):010401. DOI: 10.7189/jogh.03.010401.

Garenne M, Ronsmans C, Campbell H. The magnitude of mortality from acute respiratory infections in children under 5 years in developing countries. World Health Stat Q. 1992;45(2–3):180–91. PMID: 1462653.

Howie SRC, Murdoch DR. Global childhood pneumonia: The good news, the bad news, and the way ahead. Lancet Glob Health. 2019;7(1):e4–5. DOI: 10.1016/S2214-109X(18)30446-7.

Troeger C, Blacker B, Khalil IA, Rao PC, Cao J, Zimsen SRM, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1191–210. DOI: 10.1016/S1473-3099(18)30310-4.

Verhoeven D. Influence of immunological maturity on respiratory syncytial virus-induced morbidity in young children. Viral Immunol. 2019;32(2):76–83. DOI: 10.1089/vim.2018.0121.

Arif F. Updated recommendations of Rcog on prevention of early onset neonatal group B Streptococcus infection. J Ayub Med Coll Abbottabad. 2018;30(3):490. PMID: 30465394.

Berman-Rosa M, O’Donnell S, Barker M, Quach C. Efficacy and effectiveness of the PCV-10 and PCV-13 vaccines against invasive pneumococcal disease. Pediatrics 2020;145(4):e20190377. DOI: 10.1542/peds.2019-0377

Chapman R, Sutton K, Dillon-Murphy D, Patel S, Hilt.on B, Farkouh R, et al. Ten year public health impact of 13-valent pneumococcal conjugate vaccination in infants: A modelling analysis. Vaccine 2020;38(45):7138–45. DOI: 10.1016/j.vaccine.2020.08.068.

Tereziu S, Minter DA. Pneumococcal vaccine [Internet]. 2024. Available from: https://www.ncbi.nlm.nih.gov/sites/books/NBK507794/.

Klugman KP, Chien YW, Madhi SA. Pneumococcal pneumonia and influenza: A deadly combination. Vaccine. 2009;27(suppl 3):C9–14. DOI: 10.1016/j.vaccine.2009.06.007.

Ananworanich J, Lee IT, Ensz D, Carmona L, Schaefers K, Avanesov A, et al. Safety and immunogenicity of mRNA-1010, an investigational seasonal influenza vaccine, in healthy adults: Final results from a phase 1/2 randomized trial. J Infect Dis. 2025;231(1):e113-22. DOI: 10.1093/infdis/jiae329.

Musher D. Patient education: Pneumonia prevention in adults (Beyond the Basics). 2020.

Published

10-06-2025

How to Cite

Wijaya, B., Setiawan, F. V., & Firmansyah, Y. (2025). Effectiveness of mRNA-based Influenza Vaccines in Enhancing Immunity and Their Potential to Protect Children from Pneumonia Risk: Analysis. Cermin Dunia Kedokteran, 52(6), 400–406. https://doi.org/10.55175/cdk.v52i6.1619