Microbiome and Its Roles in Gut-Brain Axis

Authors

  • Khing S. Ong Director Allergy and Immunology Division, Department of Pediatrics, University of California Irvine, USA, 1978-1985
  • Zack ST. Lim Retired RPH (Registered Pharmacist), USA
  • Boenjamin Setiawan Founder, Stem Cell Institute, PT. Kalbe Farma Tbk. Jakarta, Indonesia

DOI:

https://doi.org/10.55175/cdk.v46i8.422

Keywords:

Gut-brain axis, microbiome, prebiotic, probiotic

Abstract

Among the trillions of microbes that live in our intestinal tract, scientists have found groups of species that play a key role in our health and disease conditions. These microbes harbored on our mucosal and skin surfaces with the bulk of it in the colon of our lower gut system. It is commonly referred to as gut commensal. In this review we summarized briefly our current knowledge of these microbiota or microbiome, and how they work to affect our functions in different organs and systems including our brain and immune system, either directly or indirectly through their metabolites. Technical advances in genetic sequencing such as metagenomic and 16S rRNA (ribosomal RNA) sequencing had greatly facilitated researches on microbiome. Our review will be focused mainly on the roles of microbiome in the gut-brain axis. The use of probiotics and prebiotics for intervention of dysbiosis or altered microbiome will also be discussed.

Di antara jutaan mikroba di dalam usus, beberapa kelompok di antaranya dapat berperan dalam kesehatan manusia; secara umum dikelompokkan sebagai gut commensal. Tulisan ini meninjau peranan kelompok tersebut, cara kerjanya dalam mempengaruhi metabolisme manusia, termasuk otak dan sistem imun, baik secara langsung maupun dengan perantaraan metabolitnya. Kemajuan teknologi seperti metagenomic dan 16S rRNA (ribosomal RNA) sequencing sangat membantu penelitian mikrobiom. Tulisan ini terutama meninjau peranan mikrobiom pada gut-brain axis; juga akan dibicarakan peranan probiotik dan prebiotik untuk intervensi disbiosis.

Downloads

Download data is not yet available.

References

O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBRO Rep. 2006; 7(7):688-69

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanch C, et al. A human gut microbial gene catalogue established by metagenomic Sequencing. Nature 2010;464: 59-65

Gershon MD, editor. The second brain: The scientific basis of gut instinct and a groundbreaking new understanding of nervous disorders and intestines. New York, NY: Harper Collins Publ.; 1998.

Enciu AM, Codrici E, Mihai S, Manole E, Pop S, Codorean E, et al. Role of nutraceuticals in modulation of gut-brain axis in elderly persons [Internet]. 2017. Available from: https://www.intechopen.com/books/gerontology/role-of-nutraceuticals-in-modulation-of-gut-brain-axis-in-elderly-persons

Cani PD. Human gut microbiome: Hope, threats and promises. Gut 2018;67:1716-25

Proctor L. The NIH human microbiome project: Catalyst for an emerging field in biomedical research [Internet]. 2016. Available from: https://www.healthandenvironment.org/uploads/LM_Proctor_talk_for_CHE_webinar_052416.pdf

Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: Paradigm shift in neuroscience. J Neurosci. 2014;34(46):15490-6

Tauxe WM, Dhere T, Ward A, Racsa LD, Varkey JB, Kraft CS. Fecal microbiota transplant protocol for Clostridium difficile infection. Lab Med. 2015;46(1):19-23.

Fuller R, Gibson GR. Probiotics and prebiotics: Microflora management for improved gut health. Clin Microbiol Infect. 1998;4:477-80

Knight R, Callewaert C, Marotz C, Hyde ER, Debelius JW, McDonald D, et al. The microbiome and human biology. Ann Rev Genomics Hum Genet. 2017;18: 65-86

The NIH HMP working group. The NIH human microbiome project. Genome Res. 2009;19:2317-23

Binns NM. Probiotics, prebiotics and the gut microbiota. ILSI : D/2013/10.996/36.

Martinez-Guryu K, Hubert N, Frazier K, Urlass S, Musch MW, Ojeda P, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host & Microbe. 2018;(23)4:458-69

Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterol. 2014;146(6):1449-58

Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Khight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489(7415):220-30

Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulate fat storage. PNAS USA 2004;101: 15718-726

O’Toole PW, Cooney JC. Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis. 2008;17258

Belkaid Y, Hand T. Role of the microbiota in immunity and inflammation. Cell 2014;157(1):121-41

Dentzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Rev Neurosci. 2008; 9:46-56

Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM, et al. Antibiotic-induced changes in the nicrobiota disrupt redox dynamics in the gut. ELife, 2008;vol. 7 pii:235987

Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepathol. 2009; 6:306-14

Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterol. 2011;141:599-609.e3

Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA. Tryptophan metabolism in central nervous system: Medical implications. Exper Rev Mol Med. 2006;8:1-27.

Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 2010;139:2102-11.e1

Macfarlane S, Macfarlane GT. Regulation of short chain fatty acid production. PNAS. 2003;62:67-72

Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Comm. 2014;5:3611

De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbial-generated metabolites promote metabolic benefit via gut-brain neural circuits. Cell 2014;156:84-96

Byndloss MK, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA, Lokken KL, et al. Microbiota activated PPARr signaling inhibits dysbiosis. Science 2017;357:570-5

Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. Bioassays 2011;33:574-81

Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. PNAS USA. 2012;109:2108-13

Lee YS, Taylor AN, Reimers TJ, Edelstein S, Fullmer CS, Wasserman RH. Calbindin-D in peripheral nerve cells is vitamin D and calcium dependent. PNAS USA. 1987;84:7344-8

Tannock CW, Savage DC. Influence of dietary and environmental stress on microbial population in the murine gastrointestinal tract.Infect. Immun. 1974;9:591-8

Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stress alters the structure of the intestinal microbiota: Implications for stressorinduced immunomodulation. Brain Behav Immun. 2011;25:397-407

Soderholm JD, Perdue MH. Stress and gastrointestinal tract. II Stress and intestinal barrier function. Am J. Physiol Gastrointest Liver Physiol. 2001;280:7-13

Kelly JR, Borre Y, O' Brien C, Patterson E, El Aidy S, Deane J, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109-18

Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2010;23:255-64

Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry 2017;81:411-23

Krajmalnik-Brown R, Lozupone C, Kang DW, Adams JB. Gut bacteria in children with autism spectrum disorder: Challenges and promise of studying how complex community influences a complex disease. Microbiol. Ecol in Health & Diseases 2015;26914:1-8

Varian BJ, Poutahidis T, DiBenedictis BT, Levkovich T, Ibrahim Y, Didyk E, et al. Microbial lysate upgrade host oxytocin. Brain Behav Immun. 2017;61:36-49

Dickerson F, Severance E, Yolken R. The microbiome, immunity and schizophrenia and bipolar disorder. Brain Behav Immun. 2017;62:46-52

Fond G, Capdevielle D, Macgregor A, Attal J, Larue A, Brittner M, et al. Toxoplasma gondii: A potential role in the genesis of psychiatric disorders. Encephale. 2013;39(3):38-43

Trevor O, Ochoa-Reparaz J. The gut microbiome in multiple sclerosis: A potential therapeutic avenue. Med Sci. 2018;6(3):69 pp 1-20.

Killinger BA, Madaj Z, Sikora JW, Rey N, Haas AJ, Vepa Y, et al. The vermiform appendix impact risk of developing Parkinson’s disease. Sci Transl Med. 2018;10:5280.

Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2014;00:00:1-9

Chen SG, Stribinskis V, Rane MJ, Demuth DR, Gozal E, Roberts AM, et al. Exposure to functional bacterial amyloid protein Curli enhances Alpha synuclein aggregation in aged Fischer 344 rat and caenorhabditis elegans. Sci Rep. 2016;6:34477

Tetz G, Brown SM, Hao Y, Tetz V. Parkinson’s disease and bacteriophages as its overlook contributor. Sci Rep. 2018;8:10812.

Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiota alteration in Alzheimer’s disease. Sci Rep. 2017;7:13537

Wu S, Yi J, Zhang YG, Zhou J, Sun J. Leaking intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 2015;3(4):12356

Koloski NA, Jones M, Kalantar J, Weltman M, Zaguirre J, Talley NJ. The brain-gut pathway in functional gastrointestinal disorders is bi-directional: A 12 year prospective population based study. Gut 2012;61:1284-90

Galley JD, Nelson MC, Yu Z, Dowd SE, Walter J, Kumar PS, et al. Exposure of social stressors disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 2014;14:189

McFarlanne S, Dillon JF. Microbial biofilms in the human gastrointestinal tract. J App Microbiol. 2007; 102:1187-96

Alverdy C, Holbrook C, Rocha F, Seiden L, Wu RL, Musch M, et al. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: Evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann Surg. 2000;232:480-9

Cogan TA, Thomas AO, Rees LE, Taylor AH, Jepson MA, Williams PH, et al. Norepinephrine increases the pathogenic potential of Campylobacter jejuni.Gut 2007;56:1060-65

Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun. 2017;8:15028.

Pequeguat B, Sagermann M, Valliani M, Toh M, Chow H, Allen-Vercoe E, et al. A vaccine and diagnostic target for Clostridium bolteae, an autism-associated bacterium. Vaccine. 2013;31(26):2787-90.

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The international scientific association for probiotics and prebiotics Consensus statement on the scope and appropriate use of the term probiotic. Nature Rev Gastroenterol Hepatol. 2014;11:506-14

Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. Alteration in fecal mocrobiota composition by probiotic supplementation in healthy adults: A systematic review of randomized controlled trials. Genome Med. 2016;8: 52-62.

AlFaleh K, Anabrees J. Peobiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2014;10(4):CD005496

Crook N, Ferreiro A, Gasparrini AJ, Pesesky MW, Gibson MK, Wang B, et al. Adaptive strategies of the candidate probiotic E. coli Nissle in the mammalian gut. Cell Host Microbe. 2019;25(4):499-512.e8.

Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. The International scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Rev Gastroenterol Hepatol 2017;14 491-501

Simpson HL, Campbell BJ. Review article: Dietary fibre-microbiota interaction. Aliment Pharmacol Ther. 2015;42:158-79

Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr Res Rev. 2004;17:259-75

Downloads

Published

01-08-2019

How to Cite

Ong, K. S., Lim, Z. S., & Setiawan, B. (2019). Microbiome and Its Roles in Gut-Brain Axis. Cermin Dunia Kedokteran, 46(8), 497–502. https://doi.org/10.55175/cdk.v46i8.422

Issue

Section

Articles