Predicting Influenza Virus Mutational Complexity in the Development of Effective Vaccines for Children

Analysis

Authors

  • Birgitta Priscilla Faculty of Medicine, University of Indonesia, Depok, Indonesia
  • Benedictus Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia https://orcid.org/0000-0003-1485-9193
  • Bernie Endyarni Medise Department of Pediatrics, Faculty of Medicine, University of Indonesia / Cipto Mangunkusumo Hospital, Jakarta, Indonesia

DOI:

https://doi.org/10.55175/cdk.v52i6.1659

Keywords:

Influenza, virus mutational, vaccine

Abstract

Influenza virus infection is common in populations of all ages. Vaccination is the most effective measure to prevent infection. However, influenza viruses are prone to antigenic drift, causing the virus to mutate within a few months. Predicting influenza virus evolution plays a crucial role in ensuring the protective effect of vaccines, allowing for the selection of the appropriate vaccine type. Stacking models, convolutional neural network (CNN) models, Gaussian processes vector autoregressive models, and susceptible-exposed-infectious-removed (SEIR) models can predict influenza virus antigenic variants. Various modern models and approaches, such as influenza antigenic variants (IAV)-CNN models, sequence-based antigenic distance approach (SBA), and ensemble of nonlinear regression models, have been used to improve the efficacy and relevance of vaccination strategies.

Downloads

Download data is not yet available.

References

Ryu S, Cowling BJ. Human influenza epidemiology. Cold Spring Harb Perspect Med. 2021;11(12):a038356. DOI: 10.1101/cshperspect.a038356.

Barbieri E, Porcu G, Dona D, Cavagnis S, Cantarutti L, Scamarcia A, et al. Epidemiology and burden of influenza in children 0–14 years over ten consecutive seasons in Italy. Pediatr Infect Dis J. 2023;42(12):e440–6. DOI: 10.1097/INF.0000000000004090.

Yang L, Zhang T, Han X, Yang J, Sun Y, Ma L, et al. Influenza epidemic trend surveillance and prediction based on search engine data: Deep learning model study. J Med Internet Res. 2023;25:e45085. DOI: 10.2196/45085.

Gouma S, Anderson EM, Hensley SE. Challenges of making effective influenza vaccines. Annu Rev Virol. 2020;7(1):495–512. DOI: 10.1146/annurev-virology-010320-044746.

Perofsky AC, Nelson MI. The challenges of vaccine strain selection. eLife. 2020;9:e62955. DOI: 10.7554/eLife.62955.

Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem. 2022;414(9):2841–81. DOI: 10.1007/s00216-021-03806-6.

Lou J, Liang W, Cao L, Hu I, Zhao S, Chen Z, et al. Predictive evolutionary modelling for influenza virus by site-based dynamics of mutations. Nat Commun. 2024;15(1):2546. DOI: 10.1038/s41467-024-46918-0.

Steinbruck L, Klingen TR, McHardy AC. Computational prediction of vaccine strains for human influenza A (H3N2) viruses. J Virol. 2014;88(20):12123–32. DOI: 10.1128/JVI.01861-14.

Lee HS, Noh JY, Song JY, Cheong HJ, Choi WS, Jeong HW, et al. Molecular genetic characteristics of influenza A virus clinically isolated during 2011‐2016 influenza seasons in Korea. Influenza Other Respir Viruses. 2018;12(4):497–507. DOI: 10.1111/irv.12549.

McHardy AC, Adams B. The role of genomics in tracking the evolution of influenza A virus. PLoS Pathog. 2009;5(10):e1000566. DOI: 10.1371/journal.ppat.1000566.

Qiu X, Duvvuri VR, Bahl J. Computational approaches and challenges to developing universal influenza vaccines. Vaccines 2019;7(2):45. DOI: 10.3390/vaccines7020045.

Ciancio BC, Kramarz P. Surveillance for seasonal and novel influenza viruses. In: M’ikanatha NM, Iskander JK, editors. Concepts and methods in infectious disease surveillance. 1st Ed. Wiley; 2014. pp. 41–57.

Harvey WT, Davies V, Daniels RS, Whittaker L, Gregory V, Hay AJ, et al. A Bayesian approach to incorporate structural data into the mapping of genotype to antigenic phenotype of influenza A(H3N2) viruses. PLoS Comput Biol. 2023;19(3):e1010885. DOI: 10.1371/journal.pcbi.1010885.

Meng J, Liu J, Song W, Li H, Wang J, Zhang L, et al. PREDAC-CNN: Predicting antigenic clusters of seasonal influenza A viruses with convolutional neural network. Brief Bioinform. 2024;25(2):bbae033. DOI: 10.1093/bib/bbae033.

Yin R, Thwin NN, Zhuang P, Lin Z, Kwoh CK. IAV-CNN: A 2D convolutional neural network model to predict antigenic variants of influenza A virus. IEEE/ACM Trans Comput Biol Bioinform. 2022;19(6):3497–506. DOI: 10.1109/TCBB.2021.3108971.

Yin R, Tran VH, Zhou X, Zheng J, Kwoh CK. Predicting antigenic variants of H1N1 influenza virus based on epidemics and pandemics using a stacking model. PLoS One. 2018;13(12):e0207777. DOI: 10.1371/journal.pone.0207777.

Cai Z, Zhang T, Wan XF. A computational framework for influenza antigenic cartography. PLoS Comput Biol. 2010;6(10):e1000949. DOI: 10.1371/journal.pcbi.1000949.

Du X, Dong L, Lan Y, Peng Y, Wu A, Zhang Y, et al. Mapping of H3N2 influenza antigenic evolution in China reveals a strategy for vaccine strain recommendation. Nat Commun. 2012;3(1):709. DOI: 10.1038/ncomms1710.

Liang J, Zeng Z, Li Q, Guan W, Yang Z, Hon C. Challenge on prediction of influenza virus and SARS‐CoV‐2 virus co‐circulation. Interdisciplinary Med. 2023;1(2):e20220006.

Steel J, Lowen AC. Influenza A virus reassortment. In: Compans RW, Oldstone MBA, editors. Influenza pathogenesis and control - Volume I. Cham: Springer Internat Publ; 2014. pp. 377–401.

Forghani M, Firstkov AL, Alyannezhadi MM, Danilenko DM, Komissarov AB. Reduced amino acid alphabet-based encoding and its impact on modeling influenza antigenic evolution. Russian J Infect Immunity. 2022;12(5):837–49. DOI: 10.15789/2220-7619-RAA-1968.

Yan C, Hu J. A hidden markov model approach to identifying HTH motifs using protein sequence and predicted solvent accessibility. 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology [Internet]. 2006 [cited 2024 Aug 16];1–7. Available from: http://ieeexplore.ieee.org/document/4133147/.

Beckstette M, Homann R, Giegerich R, Kurtz S. Fast index based algorithms and software for matching position specific scoring matrices. BMC Bioinformatics 2006;7(1):389.

Published

10-06-2025

How to Cite

Priscilla, B., Benedictus, & Medise, B. E. (2025). Predicting Influenza Virus Mutational Complexity in the Development of Effective Vaccines for Children: Analysis. Cermin Dunia Kedokteran, 52(6), 407–411. https://doi.org/10.55175/cdk.v52i6.1659