Prediksi Kompleksitas Mutasi Virus Influenza dalam Pengembangan Vaksin yang Efektif untuk Anak
Analisis
DOI:
https://doi.org/10.55175/cdk.v52i6.1659Kata Kunci:
Influenza, mutasi virus, vaksinAbstrak
Infeksi virus influenza umum terjadi pada populasi segala usia. Vaksinasi merupakan tindakan paling efektif untuk mencegah infeksi. Akan tetapi, virus influenza dapat melakukan antigenic drift yang menyebabkan virus dapat bermutasi dalam hitungan bulan.Oleh karena itu, prediksi evolusi virus influenza berperan penting dalam memastikan efek perlindungan vaksin agar dapat memilih jenis vaksin yang tepat. Stacking model, convolutional neural network (CNN) model, Gaussian processes vector autoregressive, dan susceptible-exposed-infectious-removed (SEIR) model dapat digunakan untuk memprediksi varian antigenik virus influenza. Berbagai model dan pendekatan modern telah digunakan untuk meningkatkan efikasi dan relevansi strategi vaksinasi, seperti influenza antigenic variants (IAV)-CNN model, sequence-based antigenic distance approach (SBA), dan ensemble of nonlinear regression models.
Unduhan
Referensi
Ryu S, Cowling BJ. Human influenza epidemiology. Cold Spring Harb Perspect Med. 2021;11(12):a038356. DOI: 10.1101/cshperspect.a038356.
Barbieri E, Porcu G, Dona D, Cavagnis S, Cantarutti L, Scamarcia A, et al. Epidemiology and burden of influenza in children 0–14 years over ten consecutive seasons in Italy. Pediatr Infect Dis J. 2023;42(12):e440–6. DOI: 10.1097/INF.0000000000004090.
Yang L, Zhang T, Han X, Yang J, Sun Y, Ma L, et al. Influenza epidemic trend surveillance and prediction based on search engine data: Deep learning model study. J Med Internet Res. 2023;25:e45085. DOI: 10.2196/45085.
Gouma S, Anderson EM, Hensley SE. Challenges of making effective influenza vaccines. Annu Rev Virol. 2020;7(1):495–512. DOI: 10.1146/annurev-virology-010320-044746.
Perofsky AC, Nelson MI. The challenges of vaccine strain selection. eLife. 2020;9:e62955. DOI: 10.7554/eLife.62955.
Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem. 2022;414(9):2841–81. DOI: 10.1007/s00216-021-03806-6.
Lou J, Liang W, Cao L, Hu I, Zhao S, Chen Z, et al. Predictive evolutionary modelling for influenza virus by site-based dynamics of mutations. Nat Commun. 2024;15(1):2546. DOI: 10.1038/s41467-024-46918-0.
Steinbruck L, Klingen TR, McHardy AC. Computational prediction of vaccine strains for human influenza A (H3N2) viruses. J Virol. 2014;88(20):12123–32. DOI: 10.1128/JVI.01861-14.
Lee HS, Noh JY, Song JY, Cheong HJ, Choi WS, Jeong HW, et al. Molecular genetic characteristics of influenza A virus clinically isolated during 2011‐2016 influenza seasons in Korea. Influenza Other Respir Viruses. 2018;12(4):497–507. DOI: 10.1111/irv.12549.
McHardy AC, Adams B. The role of genomics in tracking the evolution of influenza A virus. PLoS Pathog. 2009;5(10):e1000566. DOI: 10.1371/journal.ppat.1000566.
Qiu X, Duvvuri VR, Bahl J. Computational approaches and challenges to developing universal influenza vaccines. Vaccines 2019;7(2):45. DOI: 10.3390/vaccines7020045.
Ciancio BC, Kramarz P. Surveillance for seasonal and novel influenza viruses. In: M’ikanatha NM, Iskander JK, editors. Concepts and methods in infectious disease surveillance. 1st Ed. Wiley; 2014. pp. 41–57.
Harvey WT, Davies V, Daniels RS, Whittaker L, Gregory V, Hay AJ, et al. A Bayesian approach to incorporate structural data into the mapping of genotype to antigenic phenotype of influenza A(H3N2) viruses. PLoS Comput Biol. 2023;19(3):e1010885. DOI: 10.1371/journal.pcbi.1010885.
Meng J, Liu J, Song W, Li H, Wang J, Zhang L, et al. PREDAC-CNN: Predicting antigenic clusters of seasonal influenza A viruses with convolutional neural network. Brief Bioinform. 2024;25(2):bbae033. DOI: 10.1093/bib/bbae033.
Yin R, Thwin NN, Zhuang P, Lin Z, Kwoh CK. IAV-CNN: A 2D convolutional neural network model to predict antigenic variants of influenza A virus. IEEE/ACM Trans Comput Biol Bioinform. 2022;19(6):3497–506. DOI: 10.1109/TCBB.2021.3108971.
Yin R, Tran VH, Zhou X, Zheng J, Kwoh CK. Predicting antigenic variants of H1N1 influenza virus based on epidemics and pandemics using a stacking model. PLoS One. 2018;13(12):e0207777. DOI: 10.1371/journal.pone.0207777.
Cai Z, Zhang T, Wan XF. A computational framework for influenza antigenic cartography. PLoS Comput Biol. 2010;6(10):e1000949. DOI: 10.1371/journal.pcbi.1000949.
Du X, Dong L, Lan Y, Peng Y, Wu A, Zhang Y, et al. Mapping of H3N2 influenza antigenic evolution in China reveals a strategy for vaccine strain recommendation. Nat Commun. 2012;3(1):709. DOI: 10.1038/ncomms1710.
Liang J, Zeng Z, Li Q, Guan W, Yang Z, Hon C. Challenge on prediction of influenza virus and SARS‐CoV‐2 virus co‐circulation. Interdisciplinary Med. 2023;1(2):e20220006.
Steel J, Lowen AC. Influenza A virus reassortment. In: Compans RW, Oldstone MBA, editors. Influenza pathogenesis and control - Volume I. Cham: Springer Internat Publ; 2014. pp. 377–401.
Forghani M, Firstkov AL, Alyannezhadi MM, Danilenko DM, Komissarov AB. Reduced amino acid alphabet-based encoding and its impact on modeling influenza antigenic evolution. Russian J Infect Immunity. 2022;12(5):837–49. DOI: 10.15789/2220-7619-RAA-1968.
Yan C, Hu J. A hidden markov model approach to identifying HTH motifs using protein sequence and predicted solvent accessibility. 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology [Internet]. 2006 [cited 2024 Aug 16];1–7. Available from: http://ieeexplore.ieee.org/document/4133147/.
Beckstette M, Homann R, Giegerich R, Kurtz S. Fast index based algorithms and software for matching position specific scoring matrices. BMC Bioinformatics 2006;7(1):389.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Birgitta Priscilla, Benedictus, Bernie Endyarni Medise

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.