The Effect of Smoking on Matrix Metalloproteinase-9 (MMP-9) Expression and Its Relationship with Chronic Obstructive Pulmonary Disease

Systematic Review

Authors

  • Oki Nugraha Putra Faculty of Pharmacy, Hang Tuah University, Surabaya, Indonesia
  • Rantie Queenza Anabella Pharmacy Study Programme, Faculty of Pharmacy, Hang Tuah University, Surabaya, Indonesia
  • Istiara Nafida In’ami Pharmacy Study Programme, Faculty of Pharmacy, Hang Tuah University, Surabaya, Indonesia
  • Akbar Yuniar Nur Hasibullah Ma Pharmacy Study Programme, Faculty of Pharmacy, Hang Tuah University, Surabaya, Indonesia
  • Ryo Wahyu Purwanto Pharmacy Professional Education Study Programme, Faculty of Pharmacy, Hang Tuah University, Surabaya, Indonesia

DOI:

https://doi.org/10.55175/cdk.v53i01.1788

Keywords:

Matrix metalloproteinase-9, MMP-9, COPD, cigarette

Abstract

Introduction: Cigarette smoke can induce the expression of matrix metalloproteinase-9 (MMP-9) and is associated with COPD. This review aims to assess the impact of cigarette smoke on MMP-9 expression and its association with COPD. Methods: This study is a scoping review using articles analyzing the impact of cigarette smoke on MMP-9 levels in COPD patients from the PubMed and Google Scholar databases. A total of 11 articles that met the inclusion criteria were used in this review, of which 6 studies used serum or plasma, 1 study used bronchoalveolar lavage (BAL), and 4 studies used sputum samples to measure MMP-9 levels. Results: Overall, MMP-9 levels were found to be significantly greater in COPD patients who smoked compared to non-smoking COPD patients and healthy individuals. MMP-9 levels increased with increasing severity of COPD. MMP-9 levels correlated with the smoking index. Conclusion: More cigarette consumption will further increase MMP-9 levels. Smoking increases MMP-9 expression and is associated with COPD.

Downloads

Download data is not yet available.

References

Santo AH, Fernandes FLA. Chronic obstructive pulmonary disease-related mortality in Brazil, 2000–2019: a multiple-cause-of-death study. J Chronic Obstruct Pulm Dis. 2022;19(1):216–25. doi: 10.1080/15412555.2022.2061934.

Chen S, Kuhn M, Prettner K, Yu F, Yang T, Barnighausen T, et al. The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020–50: a health-augmented macroeconomic modelling study. Lancet Glob Health. 2023;11(8):1183–93. doi: 10.1016/S2214-109X(23)00217-6.

Alqahtani JS. Prevalence, incidence, morbidity and mortality rates of COPD in Saudi Arabia: trends in burden of COPD from 1990 to 2019. PLoS One. 2022;17(5):e0268772. doi: 10.1371/journal.pone.0268772.

Perhimpuan Dokter Paru Indonesia. Penyakit paru obstruktif kronik. Pedoman diagnosis dan penatalaksanaan di Indonesia. Jakarta; 2023.

Kementerian Kesehatan Republik Indonesia. Survei kesehatan Indonesia (SKI) dalam angka tahun 2023

Safitri W, Martini S, Artanti KD, Li CY. Smoking from a younger age is the dominant factor in the incidence of chronic obstructive pulmonary

disease: case-control study. Int J Environ Res Public Health. 2021;18(11):6047. doi: 10.3390/ijerph18116047.

Salawati L, Husnah H, Nawawi YS, Muchlisin ZA. Relationship between smoking activity and chronic obstructive pulmonary disease in

the Zainoel Abidin General Hospital, Banda Aceh, Indonesia. Open Access Maced J Med Sci. 2020;8:705–7. https://doi.org/10.3889/oamjms.2020.4527.

Pertiwi MD, Martini S, Dw AK, Widati S. The relationship of hypertension, genetic and degree of smoking with the incidence of COPD at Haji public hospital Surabaya. Indon J Publ Health. 2022;17(2): 241−51. https://doi.org/10.20473/ijph.v17i2.2022.241-251.

Xu J, Zeng Q, Li S, Su Q, Fan H. Inflammation mechanism and research progress of COPD. Front Immunol. 2024;15:1404615. doi: 10.3389/fimmu.2024.1404615.

Christopoulou ME, Papakonstantinou E, Stolz D. Matrix metalloproteinases in chronic obstructive pulmonary disease. Int J Mol Sci.2023;24(4):3786. doi: 10.3390/ijms24043786.

Verma KA, Pandey KA, Singh A, Kant S, Ali Mahdi A, Prakash V, et al. Increased serum levels of matrix-metalloproteinase-9, cyclo-oxygenase-2 and prostaglandin E-2 in patients with chronic obstructive pulmonary disease (COPD). Indian J Clin Biochem. 2022;37(2):169–77. doi:10.1007/s12291-021-00973-2.

Forey BA, Thornton AJ, Lee PN. Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema. BMC Pulm Med. 2011;11:36. doi: 10.1186/1471-2466-11-36.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:71. https://doi.org/10.1136/bmj.n71.

Arbaningsih SR, Syarani F, Ganie RA, Lelo A. The levels of vitamin D, metalloproteinase-9 and tissue inhibitor metalloproteinase-1 in COPD

patients, healthy smokers and non-smokers of Indonesian citizens. Open Access Maced J Med Sci. 2019;7(13):2123–6. doi: 10.3889/oamjms.2019.612.

Lestari AD, Apriningsih H, Reviono R, Sutanto YS, Setijadi AR. Serum matrix metalloproteinase 9 level, blood absolute neutrophil count in

correlation with diffusion capacity and exercise capacity of stable chronic obstructive pulmonary disease patients at Universitas Sebelas Maret Hospital. J Respir Indo. 2024;44(3):243−52. https://doi.org/10.36497/jri.v44i3.400.

Staitieh BS, Malik S, Auld SC, Wigger GW, Fan X, Roth AT, et al. HIV increases the risk of cigarette smoke-induced emphysema through MMP-9. J Acquir Immune Defic Syndr. 2023;92(3):263−70. doi: 10.1097/QAI.0000000000003125.

Abdella AM, Attia GA, Eed MA, Eldib AS, Haleem SS. Evaluation of matrix metalloproteinase-9 and tissue inhibitor metalloproteinase-1 levels

in bronchoalveolar lavage of apparently healthy smokers. Egyptian J Chest Dis Tuberculosis. 2015;64(2):371–8. https://doi.org/10.1016/j.ejcdt.2014.12.001.

Esa SA, Rawy AM, EL-Behissy MM, Kamel MH, El-Hwaitty HMMM. Study of the level of sputum matrix metalloproteinase-9 (MMP-9) and tissue inhibitor metalloproteinase-1 (TIMP-1) in COPD patients. Egyptian J Chest Dis Tuberculosis. 2014;63(4):861–7. https://doi.org/10.1016/j.ejcdt.2014.06.014.

Culpitt SV, Rogers DF, Traves SL, Barnes PJ, Donnelly LE. Sputum matrix metalloproteases: comparison between chronic obstructive pulmonary disease and asthma. Respir Med. 2005;99(6):703–10. doi: 10.1016/j.rmed.2004.10.022.

Brajer B, Batura-Gabryel H, Nowicka A, Kuznar-Kaminska B, Szczepanik A. Concentration of matrix metalloproteinase-9 in serum of patients with chronic obstructive pulmonary disease and a degree of airway obstruction and disease progression. J Physiol Pharmacol. 2008;59 Suppl 6:145−52. PMID: 19218638.

Pandey S, Gaur P, Garg R, Kant S, Bhattacharya S, Dubey A, et al. Association of serum MMP 9 level with COPD and healthy control in North Indian population. Internat J Life-Sci Scient Res. 2018;4(2):1703–6. doi: 10.21276/ijlssr.2018.4.2.15.

Kaddor C, Steinbüchel A. Implications of various phosphoenolpyruvatecarbohydrate phosphotransferase system mutations on glycerol utilization and poly (3-hydroxybutyrate) accumulation in Ralstonia eutropha H16. AMB Express. 2011;1(1):16. doi: 10.1186/2191-0855-1-16.

Ilumets H, Rytilä P, Demedts I, Brusselle GG, Sovijärvi A, Myllärniemi M, et al. Matrix metalloproteinases-8,-9 and-12 in smokers and patients with Stage 0 COPD. Internat J COPD. 2007;2(3): 369−79. PMID: 18229576.

Koo HK, Hong Y, Lim MN, Yim JJ, Kim WJ. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator

response, and emphysema severity. Internat J COPD. 2016;11(1):1129–37. doi: 10.2147/COPD.S103281.

Finicelli M, Digilio FA, Galderisi U, Peluso G. The emerging role of macrophages in chronic obstructive pulmonary disease: the potential

impact of oxidative stress and extracellular vesicle on macrophage polarization and function. Antioxidants 2022;11(3):464. doi: 10.3390/antiox11030464.

Sitorus RJ, Purba IG, Natalia M, Tantrakarnapa K. The effect of smoking and respiration of carbon monoxide among active smokers in Palembang, Indonesia. Kesmas. 2021;16(2):108–12. https://doi.org/10.21109/kesmas.v16i2.3297.

Dimic-Janjic S, Hoda MA, Milenkovic B, Kotur-Stevuljevic J, Stjepanovic M, Gompelmann D, et al. The usefulness of MMP-9, TIMP-1 and MMP-9/TIMP-1 ratio for diagnosis and assessment of COPD severity. Eur J Med Res. 2023;28(1):127. doi: 10.1186/s40001-023-01094-7.

Zhou L, Le Y, Tian J, Yang X, Jin R, Gai X, et al. Cigarette smoke-induced RANKL expression enhances MMP-9 production by alveolar macrophages. Internat J COPD. 2019;14:81–91. doi: 10.2147/COPD.S190023.

Rey-Brandariz J, Perez-Ríos M, Ahluwalia JS, Beheshtian K, Fernández-Villar A, Represas-Represas C, et al. Tobacco patterns and risk of chronic obstructive pulmonary disease: results from a cross-sectional study. Arch Bronchoneumol. 2023;59(11):717–24. doi: 10.2147/COPD.S190023.

Published

06-01-2026

How to Cite

Nugraha Putra, O., Anabella, R. Q., In’ami, I. N., Nur Hasibullah Ma, A. Y., & Purwanto, R. W. (2026). The Effect of Smoking on Matrix Metalloproteinase-9 (MMP-9) Expression and Its Relationship with Chronic Obstructive Pulmonary Disease: Systematic Review. Cermin Dunia Kedokteran, 53(01), 12–18. https://doi.org/10.55175/cdk.v53i01.1788