Application of Predictive Models for Tuberculous Meningitis Outcome: A Comparative Analysis of Decision Tree and Logistic Regression Approaches
DOI:
https://doi.org/10.55175/cdk.v52i4.1324Keywords:
Decision tree, logistic regression, outcome determinants, tuberculous meningitisAbstract
Background: Tuberculous meningitis remains one of the most severe complications of tuberculosis infection. This study evaluated critical factors influencing mortality among tuberculous meningitis (TBM) patients and compared the predictive efficacies of logistic regression and decision tree models. Methods: A retrospective cohort analysis using medical records from 65 TBM patients at R.D. Kandou Hospital from January 2018 to July 2021. Patient outcomes were assessed with the Glasgow outcome scale (GOS), and the mortality risk was calculated. Key predictors of mortality identified by both multivariate logistic regression and the decision tree were compared using the receiving operating characteristic (ROC) curve. Result: Multivariate logistic regression analysis identified SGOT levels at admission (aOR: 1.06; CI95% 1.02-1.09; p=0.001), length of stay (aOR: 0.81; CI95% 0.71-0.92; p=0.002), and positive nuchal rigidity (aOR: 41.78; CI95% 3.41-512.27; p=0.004) as significant predictors of mortality. Decision tree analysis highlighted the British Medical Research Council (BMRC) stage, temperature, and potassium levels below 4.3 as critical predictors. Both models showed comparable predictive performance on the ROC curve, with no significant difference (0.85 vs. 0.95; p = 0.074). Conclusion: These results suggest that decision tree analysis is a viable alternative to logistic regression for predicting mortality in TBM patients, providing complementary insights into outcome-related factors. Further research is needed to refine these predictive models.
Downloads
References
Seid G, Alemu A, Dagne B, Gamtesa DF. Microbiological diagnosis and mortality of tuberculosis meningitis: Systematic review and meta-analysis. PLoS One 2023;18(2):e0279203. DOI:10.1371/journal.pone.0279203.
Maroco J, Silva D, Rodrigues A, Guerreiro M, Santana I, De Mendonça A. Data mining methods in the prediction of dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res Notes. 2011;4(1):299. DOI:10.1186/1756-0500-4-299.
Tan D, Wang B, Li X, Zhang D, Li M, Li Y, et al. Identification of risk factors of multidrug-resistant tuberculosis by using classification tree method. Am J Trop Med Hyg. 2017;97(6):1720-5. DOI:10.4269/ajtmh.17-0029.
Gan X, Xu Y, Liu L, Huang S, Xie D, Wang X, et al. Predicting the incidence risk of ischemic stroke in a hospital population of southern China: A classification tree analysis. J Neurol Sci. 2011;306(1-2):108-14. DOI:10.1016/j.jns.2011.03.032.
Piper ME, Loh WY, Smith SS, Japuntich SJ, Baker TB. Using decision tree analysis to identify risk factors for relapse to smoking. Substance Use & Misuse 2011;46(4):492-510. DOI:10.3109/10826081003682222.
El-Solh A, Mylotte J, Sherif S, Serghani J, Grant BJ. Validity of a decision tree for predicting active pulmonary tuberculosis. Am J Respir Crit Care Med. 1997;155(5):1711-16. DOI:10.1164/ajrccm.155.5.9154881.
Souza FM, Prado TND, Werneck GL, Luiz RR, Maciel ELN, Faerstein E, et al. Classification and regression trees for predicting the risk of a negative test result for tuberculosis infection in Brazilian healthcare workers: A cross-sectional study. Rev Bras Epidemiol. 2021;24:e210035. DOI:10.1590/1980-549720210035.
Marais S, Thwaites G, Schoeman JF, Torok ME, Misra UK, Prasad K, et al. Tuberculous meningitis: A uniform case definition for use in clinical research. Lancet Infect Dis. 2010;10(11):803-12. DOI:10.1016/S1473-3099(10)70138-9.
Ganiem AR, Parwati I, Wisaksana R, van der Zanden A, van Soolingen D, van der Meer JW, et al. The effect of HIV infection on adult meningitis in Indonesia: A prospective cohort study. AIDS 2009;23(17):2309-16. DOI:10.1097/QAD.0b013e3283320de8.
Munir B, Prayudi F, Setianto CA, Siswanto S. Factors affecting prognosis of tuberculous meningitis in Saiful Anwar General Hospital Malang. MNJ. 2020;6(1):1-4. DOI: 10.21776/ub.mnj.2020.006.01.1.
Soria J, Metcalf T, Mori N, Newby RE, Montano SM, Huaroto L, et al. Mortality in hospitalized patients with tuberculous meningitis. BMC Infect Dis. 2019;19(1):9. DOI:10.1186/s12879-018-3633-4.
Thao LTP, Heemskerk AD, Geskus RB, Mai NTH, Ha DTM, Chau TTH, et al. Prognostic models for 9-month mortality in tuberculous meningitis. Clin Infect Dis. 2018;66(4):523-32. DOI:10.1093/cid/cix849.
Wang MG, Luo L, Zhang Y, Liu X, Liu L, He JQ. Treatment outcomes of tuberculous meningitis in adults: A systematic review and meta-analysis. BMC Pulm Med. 2019;19(1):200. DOI: 10.1186/s12890-019-0966-8.
Kumar A, Mudassir S, Ranjan A, Wankhade BB, Rai AK, Kumar S, et al. Clinical profile and mortality predictors in hospitalised patients of tuberculous meningitis. Neurol Asia 2023;28(1):149-57. DOI:10.54029/2023wsp.
Taylor WR, Nguyen K, Nguyen D, Nguyen H, Horby P, Nguyen HL, et al. The spectrum of central nervous system infections in an adult referral hospital in Hanoi, Vietnam. PLoS One 2012;7(8):e42099. DOI:10.1371/journal.pone.0042099.
Aiwara S, Aglua I. Clinical predictors of treatment outcome in Melanesians adults with tuberculous meningitis at the Kundiawa General Hospital in Papua New Guinea. Infect Dis (except HIV/AIDS) 2022. DOI:10.1101/2022.09.03.22279565.
Hosoglu S, Geyik MF, Balik I, Aygen B, Erol S, Aygencel SG, et al. Predictors of outcome in patients with tuberculous meningitis. Int J Tuberc Lung Dis. 2002;6(1):64-70. PMID: 11931403.
Lee HG, William T, Menon J, Jegasothy R, Ponnampalavanar S, Omar SF, et al. Tuberculous meningitis is a major cause of mortality and morbidity in adults with central nervous system infections in Kota Kinabalu, Sabah, Malaysia: An observational study. BMC Infect Dis. 2016;16:296. DOI:10.1186/s12879-016-1640-x.
Woldeamanuel YW, Girma B. A 43-year systematic review and meta-analysis: Case-fatality and risk of death among adults with tuberculous meningitis in Africa. J Neurol. 2014;261(5):851-65. DOI:10.1007/s00415-013-7060-6.
Alarcon F, Moreira J, Rivera J, Salinas R, Duenas G, Van den Ende J. Tuberculous meningitis: Do modern diagnostic tools offer better prognosis prediction? Indian J Tuberc. 2013;60(1):5-14. PMID: 23540083.
Zhao H, Wang Y, Zhang T, Wang Q, Xie W. Drug-induced liver injury from anti-tuberculosis treatment: A retrospective cohort study. Med Sci Monit. 2020;26:e920350. DOI:10.12659/MSM.920350.
Donald PR. Hepatic toxicity during chemotherapy for severe tuberculous meningitis. Arch Pediatr Adolesc Med. 1987;141(7):741. DOI:10.1001/archpedi.1987.04460070043019.
O’Brien RJ, Long MW, Cross FS, Lyle MA, Snider DE. Hepatotoxicity from isoniazid and rifampin among children treated for tuberculosis. Pediatrics 1983;72(4):491-9. PMID: 6604257.
Tsagaropoulou-Stinga H, Mataki-Emmanouilidou T, Karida-Kavalioti S, Manios S. Hepatotoxic reactions in children with severe tuberculosis treated with isoniazid-rifampin. Pediatr Infect Dis J. 1985;4(3):270-3. DOI:10.1097/00006454-198505000-00013.
Feng B, Fei X, Sun Y, Zhang X, Shang D, Zhou Y, et al. Correction to: Prognostic factors of adult tuberculous meningitis in intensive care unit: A single-center retrospective study in East China. BMC Neurol. 2021;21(1):406. DOI:10.1186/s12883-021-02433-z.
Zhu X, He N, Tong L, Gu ZH, Li H. Clinical characteristics of tuberculous meningitis in older patients compared with younger and middle-aged patients: A retrospective analysis. BMC Infect Dis. 2023;23(1):699. DOI:10.1186/s12879-023-08700-3.
Cathie IA. The streptomycin treatment of tuberculous meningitis. Postgrad Med J. 1948;24(273):351-8. DOI:10.1136/pgmj.24.273.351.
Thomas KE, Hasbun R, Jekel J, Quagliarello VJ. The diagnostic accuracy of Kernig’s sign, Brudzinski’s sign, and nuchal rigidity in adults with suspected meningitis. Clin Infect Dis. 2002;35(1):46-52. DOI:10.1086/340979.
Gu J, Xiao H, Wu F, Ge Y, Ma J, Sun W. Prognostic factors of tuberculous meningitis: A single-center study. Int J Clin Exp Med. 2015;8(3):4487-93. PMID: 26064373.
Sheu JJ, Yuan RY, Yang CC. Predictors for outcome and treatment delay in patients with tuberculous meningitis. Am J Med Sci. 2009;338(2):134-9. DOI:10.1097/MAJ.0b013e3181a590f1.
Soria J, Chiappe A, Gallardo J, Zunt JR, Lescano AG. Tuberculous meningitis: Impact of timing of treatment initiation on mortality. Open Forum Infectious Diseases 2021;8(7):ofab345. DOI:10.1093/ofid/ofab345.
Erdem H, Ozturk-Engin D, Tireli H, Kilicoglu G, Defres S, Gulsun S, et al. Hamsi scoring in the prediction of unfavorable outcomes from tuberculous meningitis: Results of Haydarpasa-II study. J Neurol. 2015;262(4):890-8. DOI:10.1007/s00415-015-7651-5.
Humphries MJ, Teoh R, Lau J, Gabriel M. Factors of prognostic significance in Chinese children with tuberculous meningitis. Tubercle 1990;71(3):161-8. DOI:10.1016/0041-3879(90)90069-K.
Kalita J, Misra UK. Outcome of tuberculous meningitis at 6 and 12 months: A multiple regression analysis. Int J Tuberc Lung Dis. 1999;3(3):261-5. PMID: 10094329.
Misra UK, Kalita J, Srivastava M, Mandal SK. Prognosis of tuberculous meningitis: A multivariate analysis. J Neurol Sci. 1996;137(1):57-61. DOI:10.1016/0022-510X(95)00334-X.
Davis AG, Rohlwink UK, Proust A, Figaji AA, Wilkinson RJ. The pathogenesis of tuberculous meningitis. J Leukocyte Biol. 2019;105(2):267-80. DOI:10.1002/JLB.MR0318-102R.
Doxiadis SA, Goldfinch MK, Philpott MG. Electrolyte imbalance in tuberculous meningitis. Br Med J. 1954;1(4876):1406-10. DOI: 10.1136/bmj.1.4876.1406.
Rapoport S, West CD, Brodsky WA. Salt losing conditions; The renal defect in tuberculous meningitis. J Lab Clin Med. 1951;37(4):550-61. PMID: 14824684.
More A, Verma R, Garg RK, Malhotra HS, Sharma PK, Uniyal R, et al. A study of neuroendocrine dysfunction in patients of tuberculous meningitis. J Neurol Sci. 2017;379:198-206. DOI:10.1016/j.jns.2017.06.015.
Van Laarhoven A, Dian S, Ruesen C, Hayati E, Damen MSMA, Annisa J, et al. Clinical parameters, routine inflammatory markers, and LTA4H genotype as predictors of mortality among 608 patients with tuberculous meningitis in Indonesia. J Infect Dis. 2017;215(7):1029-39. DOI:10.1093/infdis/jix051.
Shi Y, Zhang C, Pan S, Chen Y, Wang F, Zhang W, et al. The diagnosis of tuberculous meningitis: advancements in new technologies and machine learning algorithms. Front Microbiol. 2023;14:1290746. DOI:10.3389/fmicb.2023.1290746.
Darnila E, Ula M, Mauliza, Pahendra I, Ermatita. Classification of treatment tuberculosis history based on machine learning techniques. IOP Conf Ser: Mater Sci Eng. 2020;725(1):012102. DOI:10.1088/1757-899X/725/1/012102.
Zhang M, Rong J, Liu S, Liu Y, Li X, Wu S, et al. Factors related to self-rated health of older adults in rural China: A study based on decision tree and logistic regression model. Front Public Health. 2022;10:952714. DOI:10.3389/fpubh.2022.952714.
Andrews PJD, Sleeman DH, Statham PFX, McQuatt A, Corruble V, Jones PA, et al. Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: A comparison between decision tree analysis and logistic regression. J Neurosurg. 2002;97(2):326-36. DOI:10.3171/jns.2002.97.2.0326.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ferrdy Pratama Wijaya, Arthur H.P. Mawuntu, Sarah Muharomah, Melke J. Tumboimbela , F.L. Fredrik G. Langi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.