Potensi Terapi Sel Punca untuk Penyakit Alzheimer: Kenyataan atau Harapan?
DOI:
https://doi.org/10.55175/cdk.v47i1.16Keywords:
Amiloid beta protein, penyakit Alzheimer, terapi sel punca, amyloid beta protein, stem cell therapyAbstract
Penyakit Alzheimer (AD) adalah penyakit neurodegeneratif menyangkut penurunan kemampuan fungsi otak yang menyebabkan gangguan perilaku serta kognitif yang progresif sering disertai dengan gangguan visuospasial. Gejala semakin memburuk dengan bertambahnya usia. Perkembangan ilmu kedokteran akhir-akhir ini memungkinkan terapi sel punca pada penyakit neurodegenetatif. Dalam tulisan ini dibahas kemungkinan terapi sel punca pada penyakit Alzheimer.
Alzheimer disease (AD) is a long-term and progressive neurodegenerative disorder that leads to a disability of performing simple daily tasks, often accompanied by visual disturbances. Symptoms are progressively deteriorates with age. Recently, stem cell therapy has been shown to be a potential approach to various diseases, including neurodegenerative disorders. In this review, we focus on stem cell therapies for AD.
Downloads
References
Scheltens NM, Galindo-Garre F, Pijnenburg YA, van der Vlies AE, Smits LL, Koene T, et al. The identification of cognitive subtypes in Alzheimer’s disease dementia using latent class analysis. J Neurol Neurosurg Psychiatry 2015; 87(3): 235–43.
Graeber MB, Kosel S, Egensperger R, Banati RB, Muller U, Bise K, et al. Rediscovery of the case described by Alois Alzheimer in 1911: Historical, histological and molecular genetic analysis. Neurogenetics 1997; 1(1): 73–80.
Petersen RC, Smith GE, Kokmen E. Mild cognitive impairment. Clinical characterization and outcome. Arch Neurol 1999; 46: 303-8.
Palmer K, Berger AK, Monastero R, Windblad B, Backman L, Fratilioni L. Predictors of progression from mild cognitive impairment to Alzheimer disease. Neurology 2007; 68: 1596-602.
Wolf H, Grundwald M, Ecke GM, Zedlick D, Bettin S, Dannenberg C, et al. The prognosis to mild cognitive impairment in the elderly. J Neural Transm Supp. 1998;54: 31-50
Lopez OL, Becker JT, Sweer RA. Non-cognitive symptoms in mild cognitive impairment subjects. Neurocase 2005; 11: 65-71.
Cumming JL. Behavioral and neuropsychiatric outcomes in Alzheimer’ disease. CNS Spectr 2005; 10 (Supp. 18): 22-5.
Alipour F, Mohammadzadeh E, Khallaghi B. Evaluation of apoptosis in rat hippocampal tissue in an experimental model of alzheimer’s disease. Neurosci J Shefaye Khatam [Internet]. 2014. Available from: https://www.researchgate.net/publication/312351391_Evaluation_of_Apoptosis_in_Rat_Hippocampal_Tissue_in_an_
Experimental_Model_of_Alzheimer's_Disease
Kaeser PF, Ghika J, Borruat FX. Visual signs and symptoms in patients with the visual variant of Alzheimer disease. BMC Ophthalmol. 2015; 15: 65.
Gao S, Hendrie HC, Hall KS, Hui S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: A meta-analysis. Arch Gen Psychiatr. 1998; 55: 809-15.
Prince M, Wimo A, Guerchet M, Prina M, Ali GC, Wu YT, et al. World alzheimer report 2015—The global impact of dementia: An analysis of prevalence, incidence, cost and trends. London: Alzheimer’s Disease International; 2015.
Brookmeyer R, Johnson D, Ziegler-Graham K, Arrigh HM. Forecasting the global burden of Alzheimer's disease. Alz Dementia 2007; 3: 186-91.
Klein BEK, Moss SE, Klein R, Lee KE, Cruickshanks KJ. Associations of visual function with physical outcomes and limitations 5 years later in an older population: the Beaver Dam eye study. Ophthalmology 2003; 110: 644–50.
Jindal H, Bhatt B, Sk S, Singh Malik J. Alzheimer disease immunotherapeutics: Then and now. Human vaccines Immunotherapeutics 2014; 10(9): 2741–3.
Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of alzheimer's disease: A 6-month pilot study. Medscape Gen Medicine 2006; 8: 25.
Tan ZS, Beiser AS, Vasan RS, Roubenoff R, Dinarello CA, Harris TB, et al. Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology 2008; 70:1222-3.
McEwen BS. Effects of adverse experiences for brain structure and function. Biol Psychiatry 2000; 48: 721-31.
Mullan M. Familial Alzheimer's disease: Second gene locus located. BMJ 1992; 305: 1108-9.
Schellenberg GD, Boehnke M, Wijsman EM, Moore DK, Martin GM, Bird TD. Genetic association and linkage analysis of the locus and familial Alzheimer's disease. Ann Neurol 1992; 31: 223-7.
Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 1993; 342: 697–9
Karen S, Tim W, Karoline K, Oliver S, Tim S, Zuzana W. Rate of cognitive decline in Alzheimer’s disease stratified by age. J Alzheimer's Dis. 2019; 69: 1153-60.
Gosche KM, Mortimer JA, Smith CD, Markesbery WR, Snowdon DA. Hippocampal volume as an index of Alzheimer neuropathology: Findings from the Nun Study. Neurology 2002; 58: 1476–82.
Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: Diagnostic discrimination and cognitive correlations. Neurology 2009; 73: 287–93.
Hua X, Leow AD, Parikshak N, Lee S, Chiang MC, Toga AW, et al. Tensor-based morphometry as a neuroimagingbiomarker for Alzheimer’s disease: An MRI study of 676 AD, MCI, and normal subjects. Neuroimage 2008; 43: 458–69.
Budson AE, Solomon PR. Alzheimer's disease dementia and mild cognitive impairment due to Alzheimer's disease. In: Memory loss, Alzheimer's disease, and dementia (Second Edition); 2016.
Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 1993; 33: 403–8.
Heinonen O, Soininen H, Sorvari H, Kosunen O, Paljärvi L, Koivisto E. Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer's disease. Neuroscience 1995; 64: 375–84.
Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proceed Nat Acad Sci. 2009; 106: 4012-7.
López-Hernández GY, Thinschmidt JS, Morain P, Trocme-Thibierge C, Kem WR, Soti F, et al. Positive modulation of alpha7- nAChR responses in rat hippocampal interneurons to full agonists and the alpha-selective partial agents, 40H-GTS-21 and S 24795. Neuropharmacology 2009; 56: 821-30.
Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer's disease: Amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors.Prog Neurobiol. 2009; 87: 181-94.
31. Selkoe DJ. Alzheimer's disease: A central role for amyloid. J Neuropathol Exp Neurol. 1994; 53: 438–47.
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 2002; 297: 353–6.
Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E and Slutsky I. Amyloid as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci. 2009; 12: 1567 – 76.
Panza F, Solfrizzi V, Frisardi V, Imbimbo BP, Capurso C, D'Introno A, et al. Beyond the neurotransmitter-focused approach in treating Alzheimer's disease: Drugs targeting beta-amyloid and tau protein. Aging Clin Exp Res. 2009; 21: 386-406.
Querfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med. 2010; 362: 329-44.
Graeber MB. Changing face of microglia. Science 2010; 330: 783-8.
Fuhrmann M, Bittner T, Jung CK, Burgold S, Page RM, Mitteregger G, et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nat Neurosci. 2010; 13:411-3.
Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K. Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 2006; 129: 3006-19.
Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H, et al. Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol. 2009; 66: 382-9.
Zhu XC, Yu Y, Wang HF, Jiang T, Cao L, Wang C, et al. Physiotherapy intervention in Alzheimer's disease: Systematic review and meta-analysis. J Alzheimers Dis. 2015;44(1): 163-74.
Roberson ED, Mucke L. 100 years and counting: Prospects for defeating Alzheimer's disease. Science 2006; 314: 781-4.
Kadir A, Andreasen N, Almkvist O, Wall A, Forsberg A, Engler H, et al. Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer's disease. Ann Neurol. 2008; 63: 621-31.
Hampel H, Broich K. Enrichment of MCI and early Alzheimer's disease treatment trials using neurochemical and imaging candidate biomarkers. J Nutr Health Aging 2009; 13: 373-75.
Maggini M, Vanacore N, Raschetti R. Cholinesterase inhibitors: Drugs looking for a disease? PLoS Med. 2006; 3: 140.
Pocernich CB, Butterfield DA. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta 2012; 1822(5): 625–30.
Alzheimer's association: Alzheimer's disease facts and figures. Alzheimers Dement. 2010; 6: 158-94.
Persson T, Popescu BO, Cedazo-Minguez A. Oxidative stress in Alzheimer’s disease: Why didantioxidant therapy fail? Oxid Med Cell Longev. 2014; 2014: 427318
Hook V, Toneff T, Bogyo M, Greenbaum D, Medzihradszky KF, Neveu J, et al. Inhibition of cathepsin B reduces -amyloid production in regulated secretory vesicles of neuronal chromaffin cells: Evidence for cathepsin B as a candidate -secretase of Alzheimer’s disease. Biol Chem. 2005;386: 931–40.
Mueller-Steiner S, Zhou Y, Arai H, Roberson ED, Sun B, Chen J, et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: Implications for Alzheimer’s disease. Neuron 2006; 51: 703–14.
Malvajerd S, Izadi S, Azadi Z, Kurd A, Derakhshankhah M, Zadeh HS, et al. Neuroprotective potential of curcumin-loaded nanostructured lipid carrier in an animal model of Alzheimer’s disease: Behavioral and biochemical evidence. J Alz Disease 2019; 69: 671-86.
CDK 57 -282/ vol. 47 no. 1 th. 2020 51. Zhang F, Jiang L. Neuroinflammation in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2015; 11: 243-56.
Choi1 SS, Lee SR, Kim SU, Lee HJ. Alzheimer’s disease and stem cell therapy. Exp Neurobiol. 2014; 23(1): 45-52.
Bali P, Debomoy K. Lahiri, Banik A, Nehru B, Anand A. Potential for stem cells therapy in Alzheimer’s disease: Do neurotrophic factors play critical role? Curr Alzheimer Res. 2017; 14(2): 208–20.
Liu Y, Weick JP, Liu H, Krencik R, Zhang X, Ma L. Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol. 2013;31: 440–7.
Park D, Yang, YH, Bae DK, Lee SH, Yang G, Kyung, et al. Improvement of cognitive function and physical activity of aging mice by human neural stem cells overexpressing choline acetyltransferase. Neurobiol Aging 2013;34: 2639–46.
Enciu AM, Nicolescu MI, Manole CG, Muresanu DF, Popescu LM, Popescu BO. Neuroregeneration in neurodegenerative disorders. BMC Neurol. 2011;11: 75.
Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S, LaFerla FM. Neural stem cells improve memory in an inducible mouse model of neuronal loss. J Neurosci. 2007; 27: 11925–33.
Tong LM, Fong H, Huang Y. Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives. Experiment Mol Med. 2015; 47:151.
Yue W, Li Y, Zhang T, Jiang M, Qian Y, Zhang M, et al. ESC-derived basal forebrain cholinergic neurons ameliorate the cognitive symptoms associated with Alzheimer’s disease in mouse models. Stem Cell Rep. 2015; 5: 776–90.
Baraniak PR, McDevit TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010; 5(1): 121–43.
Allan CL, Sexton CE, Welchew D, Ebmeier KP. Imaging and biomarkers for Alzheimer’s disease. AD. Maturitas 2010; 65: 138–42.
Wang H, Nagai A, Sheikh AM, Liang XY, Yano S, Mitaki S. Human mesenchymal stem cell transplantation changes proinflammatory gene expression through a nuclear factor-B-dependent pathway in a rat focal cerebral ischemic model. J Neurosci Res. 2013; 91(11): 1440–9.
Ratajczak MZ, Jadczyk T, Pedziwiatr D, Wojakowski W. New advances in stem cell research: Practical implications for regenerative medicine. Pol Arch Med Wewn. 2014; 124(7–8): 417–26.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Cermin Dunia Kedokteran
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.