Kombinasi Alat Cardiac Contractility Modulation dan Terapi Sel Punca Hematopoetik CD34+CD133+ sebagai Terapi Gagal Jantung dengan Penurunan Fraksi Ejeksi
DOI:
https://doi.org/10.55175/cdk.v49i10.309Keywords:
Cardiac contractility modulation, Gagal jantung, sel CD34 CD133Abstract
Gagal jantung merupakan penyebab morbiditas dan mortalitas di seluruh dunia dan di Indonesia. Seiring progresi penurunan fungsi kontraktilitas jantung, terapi farmakologis seringkali tidak cukup, sehingga terapi invasif seperti cardiac contractility modulation (CCM) merupakan alternatif. Terapi regeneratif dengan sel punca dewasa CD34+CD133+ juga menunjukkan manfaat memperbaiki perfusi miokard dan inhibisi kerusakan lanjut pasca-iskemia. Studi literatur ini mengevaluasi potensi gabungan modalitas terapi listrik CCM dengan terapi regeneratif sel progenitor CD34+CD133+ pada pasien gagal jantung kronis dengan penurunan fraksi ejeksi hingga <30% berdasarkan penelitian 10 tahun terakhir di database online PubMed, Scopus, dan EBSCO. Kombinasi CCM dengan infus sel punca terbukti meningkatkan kontraktilitas dan membatasi area fibrosis pasca-infark. Dapat disimpulkan bahwa terapi CCM untuk perbaikan kontraktilitas berpotensi dikombinasikan dengan terapi regeneratif sel punca CD34+CD133+ untuk memaksimalkan perbaikan kontraktilitas jantung pada pasien gagal jantung kronis dengan penurunan fraksi ejeksi berat.
Heart failure is the leading cause of morbidity and mortality in general population both worldwide and in Indonesia. The progression of decreased cardiac contractility may result in inadequate pharmacological therapy, and invasive therapy such as cardiac contractility modulation (CCM) is an alternative. Regenerative therapy with adult stem cells CD34+CD133+ in various studies has also shown benefits for improving myocardial perfusion and inhibition of further post-ischemic damage. This literature study aims to evaluate the potential of combined cardiac contractility modulation (CCM) electric therapy and CD34+CD133+ progenitor cells regenerative therapy in chronic heart failure with a reduced ejection fraction to <30%. The literature study was compiled from studies of the last 10 years and registered in the online database of PubMed, Scopus, and EBSCO. This study found CCM can increase natural contraction of myocardium without increasing oxygen demand and also influences remodeling myocardium to increase its ejection fraction. Various clinical trials have also shown subpopulations of CD34+CD133+ progenitor cells from bone marrow play a role in enhancing perfusion in post-infarct myocardium, inducing myocardial repopulation and inhibiting further damage to ischemic myocardium. The combination of CCM with cell infusion has been shown to increase contractility and limit the area of post-infarct fibrosis. CCM and regenerative therapy with stem cells CD34+CD133+ may be potentially combined to maximize therapeutic cardiac contractility improvement in chronic heart failure patients with severe reduction of ejection fraction.
Downloads
References
Benjamin E, Muntner P, Alonso A, Bittencourt M, Callaway C, Carson A, et al. Heart Disease and Stroke Statistics—2019 update: A report from the American Heart Association. Circulation 2019;139(10).
WHO. Cardiovascular diseases (CVDs) [Internet]. 2019 [cited 2019 Sep 25]. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Balasopoulou A, Kokkinos P, Pagoulatos D, Plotas P, Makri OE, Georgakopoulos CD, et al. Symposium recent advances and challenges in the management of retinoblastoma globe - saving treatments. BMC Ophthalmol [Internet]. 2017;17(1):1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28331284%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5354527%5Cnhttp://bmcpsychiatry.biomedcentral.com/articles/10.1186/1471-244X-11-49%5Cn
World Health Organization. Noncommunicable diseases country profiles 2019. Geneva: WHO; 2019.
Figueroa M, Peters J. Congestive heart failure: Diagnosis, pathophysiology, therapy, and implications for respiratory care. Respir Care. 2006;51(4):403-12.
Malik A, Brito D, Chhabra L. Congestive heart failure (CHF). StatPearls Publishing [Internet]. 2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430873/
Pazos-López P, Peteiro-Vázquez J, Carcía-Campos A, García-Bueno L, de Torres J, Castro-Beiras A. The causes, consequences, and treatment of left or right heart failure. Vasc Heal Risk Manag. 2011;7:237–54.
PERKI. Pedoman tatalaksana gagal jantung. 1st ed. PERKI. Jakarta; 2015.
Rossignol P, Hernandez A, Solomon S, Zannad F. Heart failure drug treatment. Lancet 2019;393(10175):1034–44.
Niriayo Y, Kumela K, Kassa T, Angamo M. Drug therapy problems and contributing factors in the management of heart failure patients in Jimma University Specialized Hospital, Southwest Ethiopia. PLoS One 2018;13(10):0206120.
Hanafy D, Yuniadi Y, Raharjo S, Tondas A, Rahadian A, Yamin M, et al. Pedoman terapi memakai alat elektronik kardiovaskular implan (Aleka) Perhimpunan Dokter Spesialis Kardiovaskular Indonesia 2014. Indones J Cardiol. 2014;171–245.
Boriani G, Ziacchi M, Nesti M, Battista A, Placentino F, Malavasi, et al. Cardiac resynchronization therapy: How did consensus guidelines from Europe and the United States evolve in the last 15 years? Int J Cardiol. 2018;261:119–29.
Okamura H. Up-to-date cardiac resynchronization therapy. J Gen Fam Med. 2017;18(5):195–9.
Abraham W, Smith S. Devices in the management of advanced, chronic heart failure. Nat Rev Cardiol. 2012;10(2):98–110.
Borggrefe M, Mann D. Cardiac contractility modulation in 2018. Circulation 2018;138(24):2738–40.
Manginas A, Goussetis E, Koutelou M. Pilot study to evaluate the safety and feasibility of intracoronary CD133(+) and CD133(−) CD34(+) cell therapy in patients with nonviable anterior myocardial infarction. Catheter Cardiovasc Interv. 2007;69:77381.
Katarzyna R. Adult stem cell therapy for cardiac repair in patients after acute myocardial infarction leading to ischemic heart failure: An overview of evidence from the recent clinical trials. Curr Cardiol Rev. 2017;13:223–31.
Remppis A, Schauerte P, Mu D, Burkhoff D, Rousso B, Gutterman D, et al. Clinical effects of long-term cardiac contractility modulation (CCM) in subjects with heart failure caused by left ventricular systolic dysfunction. 2017;106(11):893–904.
Yu C, Chan J, Zhang Q, Yip G, Lam Y, Chan A, et al. Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC Cardiovasc Imaging. 2009;2:1341–9.
Stix G, Borggrefe M, Wolpert C, Hindricks G, Kottkamp H, Bocker D, et al. Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur Hear J. 2004;25:650–5.
Tschöpe C, Kherad B, Klein O, Lipp A, Blaschke F, Gutterman D, et al. Cardiac contractility modulation: Mechanisms of action in heart failure with reduced ejection fraction and beyond. Eur J Heart Fail. 2019;21(1):14–22.
Lompré AM, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, Marks AR. Ca2+ cycling and new therapeutic approaches for heart failure. Circulation 2010;121(6):822–30.
Currie S, Elliott EB, Smith GL, Loughrey CM. Two candidates at the heart of dysfunction: The ryanodine receptor and calcium/calmodulin protein kinase II as potential targets for therapeutic intervention-An in vivo perspective. Pharmacol Ther. 2011;131(2):204–20. http://dx.doi.org/10.1016/j.pharmthera.2011.02.006
Hasenfuss G, Pieske B. Calcium cycling in congestive heart failure. J Mol Cell Cardiol. 2002;34:951–69.
Mostafavian Z, Vakilian F, Torkmanzade L, Moghiman T. Effect of stem cell therapy on patients’ quality of life in heart failure with reduced ejection fraction. J Med Life 2018;11(4):359–64.
Nair N, Gongora E. BBA - Molecular basis of disease stem cell therapy in heart failure: Where do we stand today? BBA - Mol Basis Dis. 2019;(February):165489. https://doi.org/10.1016/j.bbadis.2019.06.003
Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105(1):93–8.
Pätilä T, Lehtinen M, Vento A, Schildt J, Sinisalo J, Laine M, et al. Autologous bone marrow mononuclear cell transplantation in ischemic heart failure: A prospective, controlled, randomized, double-blind study of cell transplantation combined with coronary bypass. J Hear Lung Transplant 2014;33(6):567–74. http://dx.doi.org/10.1016/j.healun.2014.02.009
Butler J, Epstein SE, Greene SJ, Quyyumi AA, Sikora S, Kim RJ, et al. Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: Safety and efficacy results of a phase II-A randomized trial. Circ Res. 2017;120(2):332–40.
Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El-Khorazaty J, et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM Trial. J Am Coll Cardiol. 2017;69(5):526–37. http://dx.doi.org/10.1016/j.jacc.2016.11.009
Bocchi EA, Bacal F, Guimarães G, Mendroni A, Mocelin A, Filho AE, et al. Granulocyte-colony stimulating factor or granulocyte-colony stimulating factor associated to stem cell intracoronary infusion effects in non ischemic refractory heart failure. Int J Cardiol. 2010;138(1):94–7. http://dx.doi.org/10.1016/j.ijcard.2008.06.002
Mentzer G, Hsich E. Heart failure with reduced ejection fraction in women: Epidemiology, outcomes, and treatment. Heart Fail Clin. 2019;15(1):19–27.
Lilly L. Pathophysiology of heart disease: A collaborative project of medical students and faculty. 6th ed. Baltimore: Lippincott Williams & Wilkins; 2015.
Goliasch G, Khorsand A, Schütz M, Karanikas G, Khazen C, Sochor H. The effect of device-based cardiac contractility modulation therapy on myocardial efficiency and oxidative metabolism in patients with heart failure. Eur J Nucl Med Mol Imaging 2012;39(3):408–15.
Lyon A, Samara M, Feldman D. Cardiac contractility modulation therapy in advanced systolic heart failure. Nat Rev Cardiol. 2013;10(10):584–98.
Roger S, Schneider R, Rudic B, Liebe V, Stach K, Schimpf R. Cardiac contractility modulation: First experience in heart failure patients with reduced ejection fraction and permanent atrial fibrillation. Europace 2014;16(8):1205–9.
Burkhoff D. Does contractility modulation have a role in the treatment of heart failure? Curr Heart Fail Rep. 2011;8(4):260–5.
Bartunek J, Vanderheyden M, Vandekerckhove B. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: Feasibility and safety. Circulation 2005;112:178–83.
Losordo D, Henry T, Schatz R. Autologous CD34+ cell therapy for refractory angina: 12-month results of the phase II ACT34-CMI study. Circulation 2009;120:1132-a.
Patel A, Geffner L, Vina R, Saslavsky J, Urschel H, Kormos R, et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: Aprospective randomized study. J Thorac Cardiovasc Surg. 2005;130:1631–8.
Noiseux N, Mansour S, Weisel R. The IMPACT-CABG trial: A multicenter, randomized clinical trial of CD133+ stem cell therapy during coronary artery bypass grafting for ischemic cardiomyopathy. J Thorac Cardiovasc Surg. 2016;152:1582–8.
Choudry F, Hamshere S, Saunders N. A randomized doubleblind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: The REGENERATEAMI clinical trial. Eur Hear J. 2016;37:256–63.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.