Kajian Manfaat Diet Mediterania

Analisis

Penulis

  • Loury Priskila Departemen Biokimia Fakultas Kedokteran Universitas Kristen Duta Wacana, Yogyakarta
  • Tengku Arief Buana Perkasa Fakultas Kedokteran dan Ilmu Kesehatan Universitas Jambi
  • Yogik Onky Silvana Wijaya Departemen Biokimia Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan Universitas Gadjah Mada, Sleman, Indonesia

DOI:

https://doi.org/10.55175/cdk.v51i11.1265

Kata Kunci:

Diet Mediterania, nutrigenetik, nutrigenomik

Abstrak

Perkembangan pesat ilmu nutrigenomik dan nutrigenetik telah banyak membantu pemahaman akan pentingnya interaksi faktor genetik, nutrisi, dan lingkungan dalam menjaga kesehatan manusia. Gaya hidup sehat seperti aktivitas fisik yang cukup dan pola diet sehat telah banyak
dilaporkan dapat menurunkan risiko berbagai penyakit. Salah satu pola diet sehat yang banyak dipelajari adalah pola diet mediterania (MedDiet). MedDiet merupakan pola diet berbasis nabati yang tinggi komponen serat dan asam lemak tidak jenuh serta rendah konsumsi produk daging
dan produk olahan susu. Studi pustaka ini bertujuan untuk merangkum manfaat MedDiet terhadap kesehatan dan mekanismenya.

Unduhan

Data unduhan belum tersedia.

Referensi

Badan Pusat Statistik. Angka harapan hidup (AHH) menurut provinsi dan jenis kelamin tahun 2019-2021 [Internet]. 2022. Available from: https://www.bps.go.id/indicator/40/501/1/angkaharapan-hidup-ahh-menurut-provinsi-dan-jenis-kelamin.html.

Lin Y, Chen J, Shen B. Interactions between genetics, lifestyle, and environmental factors for healthcare. Adv Exp Med Biol. 2017;1005:167-91. DOI: 10.1007/978-981-10-5717-5_8.

Dhimal M, Neupane T, Lamichhane Dhimal M. Understanding linkages between environmental risk factors and noncommunicable diseases—A review. FASEB Bioadv. 2021;3(5):287–94. DOI: 10.1096/fba.2020-00119.

Eisenberg JNS, Desai MA, Levy K, Bates SJ, Liang S, Naumoff K, et al. Environmental determinants of infectious disease: A framework for tracking causal links and guiding public health research. Environ Health Perspect. 2007;115(8):1216–23. DOI: 10.1289/ehp.9806.

Ekmekcioglu C. Nutrition and longevity – From mechanisms to uncertainties. Crit Rev Food Sci Nutr. 2020;60(18):3063–82. DOI:

1080/10408398.2019.1676698.

Clifton P. Metabolic syndrome—Role of dietary fat type and quantity. Nutrients 2019;11(7):1438. DOI: 10.3390/nu11071438.

Sofi F, Abbate R, Gensini GF, Casini A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am J Clin Nutr. 2010;92(5):1189–96. DOI: 10.3945/ajcn.2010.29673.

Di Daniele N, Noce A, Vidiri MF, Moriconi E, Marrone G, Annicchiarico-Petruzzelli M, et al. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget. 2017;8(5):8947–79. DOI: 10.18632/oncotarget.13553.

Capra M, Monopoli D, Decarolis N, Giudice A, Stanyevic B, Esposito S, et al. Dietary models and cardiovascular risk prevention in pediatric patients. Nutrients 2023;15(16):3664. DOI: 10.3390/nu15163664.

Fernandez-Castillejo S, Pedret A, Catalan Ú, Valls R, Farras M, Rubio L, et al. Virgin olive oil phenolic compounds modulate the HDL lipidome in hypercholesterolaemic subjects: A lipidomic analysis of the VOHF study. Mol Nutr Food Res. 2021;65(9):2001192.DOI: 10.1002/mnfr.202001192.

Gioxari A, Grammatikopoulou MG, Katsarou C, Panagiotakos DB, Toutouza M, Kavouras SA, et al. A modified Mediterranean diet improves fasting and postprandial glucoregulation in adults with overweight and obesity: A pilot study. Int J Environ Res Public Health 2022;19(22):15347. DOI: 10.3390/ijerph192215347.

Maraki MI, Aggelopoulou N, Christodoulou N, Anastasiou CA, Toutouza M, Panagiotakos DB, et al. Lifestyle intervention leading to moderate weight loss normalizes postprandial triacylglycerolemia despite persisting obesity. Obesity 2011;19(5):968–76. DOI: 10.1038/oby.2010.218.

Laterza L, Rizzatti G, Gaetani E, Chiusolo P, Gasbarrini A. The gut microbiota and immune system relationship in human graft-versus-host disease. Mediterr J Hematol Infect Dis. 2016;8:2016025. DOI: 10.4084/MJHID.2016.025.

Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano G, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019;7(1):14. DOI: 10.3390/microorganisms7010014.

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature 2011;473(7346):174–80. DOI: 10.1038/nature09944.

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 2012;486(7402):222–7.

De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences 2010;107(33):14691–6. DOI: 10.1073/pnas.1005963107.

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334(6052):105–8. DOI: 10.1126/science.1208344.

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505(7484):559–63. DOI: 10.1038/nature12820.

Rinott E, Meir AY, Tsaban G, Zelicha H, Kaplan A, Knights D, et al. The effects of the green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: A randomized controlled trial. Genome Med. 2022;14(1):29. DOI: 10.1186/s13073-022-01015-z.

Kimble R, Gouinguenet P, Ashor A, Stewart C, Deighton K, Matu J, et al. Effects of a Mediterranean diet on the gut microbiota and microbial metabolites: A systematic review of randomized controlled trials and observational studies. Crit Rev Food Sci Nutr. 2022;1–22. DOI: 10.1080/10408398.2022.2057416.

Vanegas SM, Meydani M, Barnett JB, Goldin B, Kane A, Rasmussen H, et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr. 2017;105(3):635–50. DOI: 10.3945/ajcn.116.146928.

Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30. DOI: 10.1038/ismej.2010.118.

Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH, et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8(11):2218–30. DOI: 10.1038/ismej.2014.63.

Tap J, Furet J, Bensaada M, Philippe C, Roth H, Rabot S, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17(12):4954–64. DOI: 10.1111/1462-2920.13006.

Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B, et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: A human feeding study. British Journal of Nutrition 2010;104(9):1353–6. DOI: 10.1017/S0007114510002084.

Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016;65(3):426–36. DOI: 10.1136/gutjnl-2014-308778.

Holscher HD, Caporaso JG, Hooda S, Brulc JM, Fahey GC, Swanson KS. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am J Clin Nutr. 2015;101(1):55–64. DOI: 10.3945/ajcn.114.092064.

Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015;22(6):971–82. DOI: 10.1016/j.cmet.2015.10.001.

So D, Whelan K, Rossi M, Morrison M, Holtmann G, Kelly JT, et al. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am J Clin Nutr. 2018;107(6):965–83. DOI: 10.1093/ajcn/nqy041.

Precup G, Vodnar DC. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: A comprehensive literature review. Br J Nutr. 2019;122(2):131–40. DOI: 10.1017/S0007114519000680.

Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol. 2021;19(9):585–99. 33. Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep. 2017;7(1):2594. DOI: 10.1038/s41598-017-02995-4.

Sabater-Molina M, Larque E, Torrella F, Zamora S. Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem. 2009;65(3):315–28. DOI: 10.1007/BF03180584.

Zannini E, Bravo Nunez Á, Sahin AW, Arendt EK. Arabinoxylans as functional food ingredients: A review. Foods 2022;11(7):1026. DOI: 10.3390/foods11071026.

Fehlner-Peach H, Magnabosco C, Raghavan V, Scher JU, Tett A, Cox LM, et al. Distinct polysaccharide utilization profiles of human intestinal Prevotella copri isolates. Cell Host Microbe 2019;26(5):680-90.e5. DOI: 10.1016/j.chom.2019.10.013.

Ortega-Santos CP, Whisner CM. The key to successful weight loss on a high-fiber diet may be in gut microbiome Prevotella abundance. J Nutr. 2019;149(12):2083–4. DOI: 10.1093/jn/nxz248.

Eriksen AK, Brunius C, Mazidi M, Hellstrom PM, Riserus U, Iversen KN, et al. Effects of whole-grain wheat, rye, and lignan supplementation on cardiometabolic risk factors in men with metabolic syndrome: A randomized crossover trial. Am J Clin Nutr. 2020;111(4):864–76. DOI: 10.1093/ajcn/nqaa026.

Chung WSF, Walker AW, Bosscher D, Garcia-Campayo V, Wagner J, Parkhill J, et al. Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with wheat bran arabinoxylan-oligosaccharides. BMC Microbiol. 2020;20(1):283. DOI: 10.1186/s12866-020-01968-4.

Chen T, Chen D, Tian G, Zheng P, Mao X, Yu J, et al. Soluble fiber and insoluble fiber regulate colonic microbiota and barrier function in a piglet model. Biomed Res Int. 2019;2019:1–12. DOI: 10.1155/2019/7809171.

Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69(1):52–60. DOI: 10.1016/j.phrs.2012.10.020.

Machate DJ, Figueiredo PS, Marcelino G, Guimaraes R de CA, Hiane PA, Bogo D, et al. Fatty acid diets: Regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. Int J Mol Sci. 2020;21(11):4093. DOI: 10.3390/ijms21114093.

Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020;11(5):411–55. DOI: 10.3920/BM2020.0057.

van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O’Sullivan O, et al. Short-chain fatty acids: Microbial metabolites that alleviate stress-induced brain–gut axis alterations. J Physiol. 2018;596(20):4923–44. DOI: 10.1113/JP276431.

Tsigalou C, Paraschaki A, Karvelas A, Kantartzi K, Gagali K, Tsairidis D, et al. Gut microbiome and Mediterranean diet in the context of obesity. Current knowledge, perspectives and potential therapeutic targets. Metabol Open 2021;9:100081. DOI: 10.1016/j.metop.2021.100081.

Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5(1):3611. DOI: 10.1038/ncomms4611.

Church JS, Bannish JAM, Adrian LA, Rojas Martinez K, Henshaw A, Schwartzer JJ. Serum short chain fatty acids mediate hippocampal BDNF and correlate with decreasing neuroinflammation following high pectin fiber diet in mice. Front Neurosci. 2023;17:1134080. DOI: 10.3389/fnins.2023.1134080.

van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O’Sullivan O, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations. J Physiol. 2018;596(20):4923–44. DOI: 10.1113/JP276431.

Wei YB, Melas PA, Wegener G, Mathe AA, Lavebratt C. Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene. Internat J Neuropsychopharmacol. 2015;18(2):pyu032–pyu032. DOI: 10.1093/ijnp/pyu032.

Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;6:1164–78. DOI: 10.5114/aoms.2015.56342.

Chen J, Faller D, Spanjaard R. Short-chain fatty acid inhibitors of histone deacetylases: Promising anticancer therapeutics? Curr Cancer Drug Targets 2003;3(3):219–36. DOI: 10.2174/1568009033481994.

Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 2021;13(6):2099. DOI: 10.3390/nu13062099.

Volmar CH, Wahlestedt C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics 2015;1:20–7. DOI: 10.1016/j.nepig.2014.10.002.

Seto E, Yoshida M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713. DOI: 10.1101/cshperspect.a018713.

Yu L, Zhong X, He Y, Shi Y. Butyrate, but not propionate, reverses maternal diet-induced neurocognitive deficits in offspring. Pharmacol Res. 2020;160:105082. DOI: 10.1016/j.phrs.2020.105082.

Tuttolomondo A, Simonetta I, Daidone M, Mogavero A, Ortello A, Pinto A. Metabolic and vascular effect of the Mediterranean diet. Int J Mol Sci. 2019;20(19):4716. DOI: 10.3390/ijms20194716.

Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128(3):229–38. DOI: 10.1016/j.amjmed.2014.10.014.

Delgado-Lista J, Alcala-Diaz JF, Torres-Pena JD, Quintana-Navarro GM, Fuentes F, Garcia-Rios A, et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): A randomised controlled trial. Lancet 2022;399(10338):1876–85. DOI: 10.1016/S0140-6736(22)00122-2.

Guallar-Castillon P, Rodriguez-Artalejo F, Tormo MJ, Sanchez MJ, Rodriguez L, Quiros JR, et al. Major dietary patterns and risk of coronary heart disease in middle-aged persons from a Mediterranean country: The EPIC-Spain cohort study. Nutr Metab Cardiovasc Dis. 2012;22(3):192–9. DOI: 10.1016/j.numecd.2010.06.004.

Delgado-Lista J, Alcala-Diaz JF, Torres-Pena JD, Quintana-Navarro GM, Fuentes F, Garcia-Rios A, et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): A randomised controlled trial. Lancet 2022;399(10338):1876–85. DOI: 10.1016/S0140-6736(22)00122-2.

Wan Musa WZ, Abu Bakar NAF, Ahmad A, Naing NN. Association between fatty acids and coronary heart disease: A scoping review. Med J Malaysia. 2022;77(1):71–81.

Fito M, Konstantinidou V. Nutritional genomics and the Mediterranean diet’s effects on human cardiovascular health. Nutrients 2016;8(4):218. DOI: 10.3390/nu8040218.

Helgadottir H, Thorisdottir B, Gunnarsdottir I, Halldorsson TI, Palsson G, Thorsdottir I. Lower intake of saturated fatty acids is associated with improved lipid profile in a 6-year-old nationally representative population. Nutrients 2022;14(3):671. DOI: 10.3390/nu14030671.

Tosti V, Bertozzi B, Fontana L. Health benefits of the Mediterranean diet: Metabolic and molecular mechanisms. J Gerontol: Ser A. 2018;73(3):318–26. DOI: 10.1093/gerona/glx227.

Salas-Salvado J, Farres X, Luque X, Narejos S, Borrell M, Basora J, et al. Effect of two doses of a mixture of soluble fibres on body weight and metabolic variables in overweight or obese patients: A randomised trial. Br J Nutr. 2008;99(6):1380–7. DOI: 10.1017/S0007114507868528.

Theuwissen E, Mensink RP. Water-soluble dietary fibers and cardiovascular disease. Physiol Behav. 2008;94(2):285–92. DOI: 10.1016/j.physbeh.2008.01.001.

American Diabetes Association. Standards of care in diabetes—2023 abridged for primary care providers. Clin Diabetes 2023;41(1):4–31. DOI: 10.2337/cd23-as01.

American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2022. Diabetes Care 2022;45(Suppl_1):S17–38. DOI: 10.2337/dc22-S002.

Shai I, Jiang R, Manson JE, Stampfer MJ, Willett WC, Colditz GA, et al. Ethnicity, obesity, and risk of type 2 diabetes in women. Diabetes Care 2006;29(7):1585–90. DOI: 10.2337/dc06-0057.

Scott RA, Langenberg C, Sharp SJ, Franks PW, Rolandsson O, Drogan D, et al. The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: the EPIC-InterAct study. Diabetologia 2013;56(1):60–9. DOI: 10.1007/s00125-012-2715-x.

Jayedi A, Soltani S, Motlagh SZ talab, Emadi A, Shahinfar H, Moosavi H, et al. Anthropometric and adiposity indicators and risk of type 2 diabetes: Systematic review and dose-response meta-analysis of cohort studies. BMJ. 2022;e067516. DOI: 10.1136/bmj-2021-067516.

Lao XQ, Deng HB, Liu X, Chan TC, Zhang Z, Chang L yun, et al. Increased leisure-time physical activity associated with lower onset of diabetes in 44 828 adults with impaired fasting glucose: A population-based prospective cohort study. Br J Sports Med. 2019;53(14):895–900. DOI: 10.1136/bjsports-2017-098199.

Spijkerman AMW, van der A DL, Nilsson PM, Ardanaz E, Gavrila D, Agudo A, et al. Smoking and long-term risk of type 2 diabetes: The EPIC-InterActstudy in European populations. Diabetes Care 2014;37(12):3164–71. DOI: 10.2337/dc14-1020.

Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348(26):2599–608. DOI: 10.1056/NEJMoa025039.

Kotzakioulafi E, Bakaloudi DR, Chrysoula L, Theodoridis X, Antza C, Tirodimos I, et al. High versus low adherence to the Mediterranean diet for prevention of diabetes mellitus type 2: A systematic review and meta-analysis. Metabolites 2023;13(7):779. DOI: 10.3390/metabo13070779.

Tranidou A, Dagklis T, Magriplis E, Apostolopoulou A, Tsakiridis I, Chroni V, et al. Pre-pregnancy adherence to Mediterranean diet and risk of gestational diabetes mellitus: A prospective cohort study in Greece. Nutrients 2023;15(4):848. DOI: 10.3390/nu15040848.

Mohtashaminia F, Hosseini F, Jayedi A, Mirmohammadkhani M, Emadi A, Takfallah L, et al. Adherence to the Mediterranean diet and risk of gestational diabetes: A prospective cohort study. BMC Pregnancy Childbirth 2023;23(1):647. doi: 10.1186/s12884-023-05960-4.

Martín-Pelaez S, Fito M, Castaner O. Mediterranean diet effects on type 2 diabetes prevention, disease progression, and related mechanisms. A review. Nutrients 2020;12(8):2236. DOI: 10.3390/nu12082236.

UK Prospective Diabetes Study [UKPDS] Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352(9131):837–53.

Panagiotakos DB, Tzima N, Pitsavos C, Chrysohoou C, Zampelas A, Toussoulis D, et al. The association between adherence to the Mediterranean diet and fasting indices of glucose homoeostasis: The ATTICA study. J Am Coll Nutr. 2007;26(1):32–8. DOI: 10.1080/07315724.2007.10719583.

Santangelo C, Filesi C, Vari R, Scazzocchio B, Filardi T, Fogliano V, et al. Consumption of extra-virgin olive oil rich in phenolic compounds improves metabolic control in patients with type 2 diabetes mellitus: A possible involvement of reduced levels of circulating visfatin. J Endocrinol Invest. 2016;39(11):1295–301. DOI: 10.1007/s40618-016-0506-9.

Tierney AC, Roche HM. The potential role of olive oil-derived MUFA in insulin sensitivity. Mol Nutr Food Res. 2007;51(10):1235–48. DOI: 10.1002/mnfr.200700143.

Trevisan M. Consumption of olive oil, butter, and vegetable oils and coronary heart disease risk factors. JAMA. 1990;263(5):688.

Dominguez LJ, Di Bella G, Veronese N, Barbagallo M. Impact of Mediterranean diet on chronic non-communicable diseases and longevity. Nutrients 2021;13(6):2028. DOI: 10.3390/nu13062028.

Despres JP. Severe COVID-19 outcomes — The role of physical activity. Nat Rev Endocrinol. 2021 Aug 10;17(8):451–2. DOI: 10.1038/s41574-021-00521-1.

Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993–1017. DOI: 10.1152/physrev.00038.2012.

Vissers D, Hens W, Taeymans J, Baeyens JP, Poortmans J, Van Gaal L. The effect of exercise on visceral adipose tissue in overweight adults: A systematic review and meta-analysis. PLoS One 2013;8(2):e56415. DOI: 10.1371/journal.pone.0056415.

Sattar N, McInnes IB, McMurray JJV. Obesity is a risk factor for severe COVID-19 infection. Circulation 2020;142(1):4–6. DOI: 10.1161/

CIRCULATIONAHA.120.047659.

Lin Y, Liu Q, Liu F, Huang K, Li J, Yang X, et al. Adverse associations of sedentary behavior with cancer incidence and all-cause mortality: A prospective cohort study. J Sport Health Sci. 2021;10(5):560–9. DOI: 10.1016/j.jshs.2021.04.002.

Guallar-Castillon P, Rodríguez-Artalejo F, Tormo MJ, Sanchez MJ, Rodriguez L, Quiros JR, et al. Major dietary patterns and risk of coronary heart disease in middle-aged persons from a Mediterranean country: The EPIC-Spain cohort study. Nutr Metab Cardiovasc Dis. 2012;22(3):192–9. DOI: 10.1016/j.numecd.2010.06.004.

Unduhan

Diterbitkan

2024-11-07

Cara Mengutip

Priskila, L., Perkasa, T. A. B., & Wijaya, Y. O. S. (2024). Kajian Manfaat Diet Mediterania: Analisis. Cermin Dunia Kedokteran, 51(11), 653–660. https://doi.org/10.55175/cdk.v51i11.1265