Trombosis pada Pasien COVID-19

Penulis

  • Christine Tan Fakultas Kedokteran, Universitas Pelita Harapan, Karawaci, Indonesia

DOI:

https://doi.org/10.55175/cdk.v48i12.156

Kata Kunci:

COVID-19, trombosis, koagulasi

Abstrak

Penyakit Coronavirus 2019 (COVID-19) memiliki spektrum klinis yang luas. Salah satu gejala berat penyakit ini dan menunjukkan prognosis buruk adalah trombosis. Risiko tinggi trombosis pada COVID-19 ditunjukkan dari peningkatan D-dimer yang merupakan perubahan paling signifikan parameter koagulasi, yang menandakan produksi trombin dan aktivasi fibrinolisis. Namun, D-dimer adalah reaktan fase akut nonspesifik dan dapat meningkat karena penyebab dan inflamasi lain. Identifikasi risiko dini dan tanda trombosis pada pasien COVID-19 dapat mencegah kejadian trombotik dan gagal organ lainnya, memandu tenaga kesehatan pada strategi intervensi awal, dan fokus pada kelompok pasien yang berisiko prognosis buruk.

Coronavirus disease 2019 (COVID-19) has a broad clinical spectrum. Thrombosis may herald severe symptom and indicates a poor prognosis. Risk of thrombosis in COVID-19 is indicated by increased D-dimer, which is the most significant change in coagulation parameters, indicating thrombin production and fibrinolysis activation. However, D-dimers are nonspecific acute-phase reactants and may increase due to other causes and inflammation. Identifying early risks and signs of thrombosis in COVID-19 patients to prevent thrombotic events and other organ failure, may guide health professionals on early intervention strategies, and to focus on groups of patients at risk of poor prognosis.

Unduhan

Data unduhan belum tersedia.

Referensi

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727-33.

COVID-19 Map. Johns Hopkins Coronavirus Resource Center [Internet]. 2020. Available from: https://coronavirus.jhu.edu/map.html

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-81.

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395(10229):1054-62.

Vidali S, Morosetti D, Cossu E, Luisi MLE, Pancani S, Semeraro V, et al. D-dimer as an indicator of prognosis in SARS-CoV-2 infection: A systematic review. ERJ Open Res. 2020;6(2):00260-2020.

Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, et al. Cytokine storm in COVID-19 – Immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM Consortium Position Paper. Front. Immunol. 2020;11:1648.

Al-Ani F, Chehade S, Lazo-Langner A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res. 2020;192:152-60.

Fogarty H, Townsend L, Cheallaigh C, Bergin C, Martin-Loeches I, Browne P, et al. COVID-19 coagulopathy in Caucasian patients. Br J Haematol. 2020;189(6):1044-9.

Ciceri F, Beretta L, Scandroglio A, Colombo S, Landoni G, Ruggeri A, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): An atypical acute respiratory distress syndrome working hypothesis, Crit Care Resusc. 2020;22(2):95-7

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet.2020; 395(10223):497-506.

Gong J, Dong H, Xia Q, Huang Z, Wang D, Zhao Y. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia: A retrospective study. BMC Infect Dis. 2020;20:963.

Merad M, Martin JC. Pathological inflammation in patients with COVID-19: A keyrole for monocytes and macrophages. Nat Rev Immunol. 2020;20:355-62.

Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089-98.

Montel V, Kwon H, Prado P, Hagelkruys A, Wimmer R, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2, Cell. 2020;181(4):905-13.e7.

Varga Z, Flammer A, Steiger P, Haverecker M, Andermatt R, Zinkernagel A, et al. Endothelial cell infection and endotheliitis in COVID-19, Lancet 2020;395(10234):1417-8.

Izcovich A, Ragusa MA, Tortosa F, Marzio MAL, Agnoletti C, Bengolea A. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS ONE. 2020;15(11):e0241955.

Gómez-Rial J, Rivero-Calle I, Salas A, Martinón-Torres F. Role of monocytes/macrophages in COVID-19 pathogenesis: Implications for therapy. Infect Drug Resist.2020;13:2485-93.

Lai M, Liu Y, Yuan J, Wen Y, Zu G, Zhao J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26:842-4.

Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Overly exuberant innate immune response to SARS-CoV-2 infection. Cell Host & Microbe-D-20-00205. 2020.

Zhang D, Guo R, Lei L, Liu H, Wang Y, Wang Y, et al. COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome. J Leukoc Biol. 2020;109(1):13-22.

Giamarellos-Bourboulis E, Netea M, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992–1000.e3.

Feng Z, Diao B, Wang R, Wang G, Wang C, Tan Y, et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. medRxiv.2020

Foley J, Conway E. Cross talk pathways between coagulation and inflammation. Circ. Res. 2016;118(9):1392–408.

Zuo Y, Yalavarthi S, Shi H, Gockman K, Guo M, Madison J, et al. Neutrophil extracellular traps in COVID-19, JCI Insight. 2020;5(11):e138999.

Barnes B, Adrover J, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford J, et al. Targeting potential drivers of COVID-19:Neutrophil extra- cellular traps. J Exp Med. 2020;217(6):e20200652.

Jiang Y, Zhao G, Song N, Li P, Chen Y, Guo Y, et al. Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4- transgenic mice infected with MERS-CoV. Emerg Microbes Infect. 2018;7(1):77

Song C, FitzGerald G. COVID-19, microangiopathy, hemostatic activation, and complement. J Clin Invest. 2020;130(8):3950-3.

Yao X, Li T, Hen Z, Ping Y, Liu H, Yu S, et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49(5):411-7.

Gao T, Zhang X, Li H, Zhu L, Liu H, Dong Q, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv [Internet]. 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.03.29.20041962v3

Rodrigues PRS, Alrubayyi A, Pring E, Bart VMT, Jones R, Coveney C, et al. Innate immunology in COVID-19 – a living review. Part II: Dysregulated inflammation drives immunopathology. Oxf Open Immunol. 2020;1(1):iqaa005. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-90.

Zores F, Rebeaud M. COVID and the renin-angiotensin system: Are hypertension or its treatments deleterious? Frontiers in Cardiovascular Medicine 7. 2020;7:71.

Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine. 2020;133:155151.

Tikellis C, Thomas M. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:256294. doi: 10.1155/2012/256294.

Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020;507:167-73.

Marone E, Rinaldi L. Upsurge of deep venous thrombosis in patients affected by COVID-19: preliminary data and possible explanations. J Vasc Surg Venous Lymphat Disord. 2020;8(4):694-5.

Zhou B, She J, Wang Y, Ma X. Venous thrombosis and arteriosclerosis obliterans of lower extremities in a very severe patient with 2019 novel coronavirus disease: A case report. J Thromb Thrombolysis. 2020;50(1):229-32.

Barbar S, Noventa F, Rossetto V, Ferrari A, Brandolin B, Perlati M, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J ThrombHaemost. 2010;8:2450-7.

Xie Y, Wang X, Yang P, Zhang S. COVID-19 complicated by acute pulmonary embolism. Radiol Cardiothorac Imaging 2020;2:e200067.

Iba T, Nisio M, Levy J, Kitamura N, Thachil J. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: A retrospective analysis of a nationwide survey. BMJ Open 2017;7:e017046.

Iba T, Levy J, Warkentin T, Thachil J, Poll T, Levi M. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019;17:1989-94.

Bonow RO, Fonarow GC, O’Gara PT, Yancy CW. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol. 2020;5(7):751-3.

Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr. 2020;14:247-50.

Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: A retrospective case series study. JAMA Neurol. 2020;77(6):1-9

Miesbach W, Makris M. COVID-19: Coagulopathy, risk of thrombosis, and the rationale for anticoagulation. Clin Appl Thromb Hemost. 2020;26:1076029620938149.

Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-43

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020;395(10223): 507-13.

Eljilany I, Elzouki AN. D-dimer, fibrinogen, and IL-6 in COVID-19 patients with suspected venous thromboembolism: A narrative review. Vasc Health Risk Manag. 2020;16:455-62.

Johnson ED, Schell JC, Rodgers GM. The D-dimer assay. Am J Hematol. 2019;94(7):833-9.

G Lippi, Favaloro EJ. D-dimer is associated with severity of coronavirus disease 2019: A pooled analysis, Thromb. Haemost. 2020;120(5):876–8.

Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-20

Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020;18:844-7.

Johnson E, Schell J, Rodgers G. The D- dimer assay. Am J Hematol. 2019;94(7):833-9.

Yu B, Li X, Chen J, Ouyang M, Zhang H, Zhao X, et al. Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: A retrospective analysis. Infect Dis. 2020;1-10

Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421-4.

Pavoni V, Gianesello L, Pazzi M, Stera C, Meconi T, Frigieri F. Evaluation of coagulation function by rotation thromboelastometry in critically ill patients with severe COVID-19 penumonia. J Thromb Thrombolysis. 2020;50(2):281-6

Deng Y, Liu W, Liu K, Fang Y, Shan J, Zhou L, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: A retrospective study. Chin Med J. 2020;133(11):1261-7.

Amgalan A, Othman M. Exploring possible mechanisms for COVID-19 induced thrombocytopenia: Unanswered questions. J Thromb Haemost. 2020;18(6):1514-6.

Poissy J, Goutay J, Caplan M, Parmentier E, Duburcq T, Lassalle F, et al. Pulmonary embolism in patients with COVID-19. Circulation 2020:142:184-6.

Bowles L, Platton S, Yartey N, Dave M, Lee K, Hart D, et al. Lupus anticoagulant and abnormal coagulation tests in patients with COVID-19. N Engl J Med. 2020;383(3):288-90.

Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, et al. Hypercoagulability of COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost 2020;18(7):1738-42.

Fan B, Chong V, Chan S, Lim G, Lim K, Tan G, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol. 2020;95(6):131-4.

Li X, Wang L, Yan S, Yang F, Xiang L, Zhu J, et al. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis. 2020;94:128-32.

Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang Y. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct Target Ther. 2020;5:33.

Zhou Y, Wei Q, Fan J, Cheng S, Ding W, Hua Z. Prognostic role of the neutrophil-to-lymphocyte ratio in pancreatic cancer: A meta-analysis containing 8252 patients. Clin. Chim Acta. 2019;479:181-9.

Kong M, Zhang H, Cao X, Mao X, Lu Z. Higher level of neutrophil-to-lymphocyte is associated with severe COVID-19. Epidemiol Infect. 2020;148:139.

Yang A, Liu J, Tao W, Li H. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int. Immunopharmacol. 2020;84:106504.

Long L, Zeng X, Zhang X, Xiao W, Guo E, Zhan W, et al. Short-term outcomes of coronavirus disease 2019 and risk factors for progression. Eur Respir J.2020;55(5):2000990.

2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology. European Heart Journal 2020;41(4):543–603. https://doi.org/10.1093/eurheartj/ehz405

Tal S, Spectre G, Kornowski R, Perl L. Venous thromboembolism complicated with COVID-19: What do we know so far? Acta Haematol. 2020;143(5):417-424.

Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):1-8.

Zuckier L, Moadel R, Haramati L, Freeman L. Diagnostic evaluation of pulmonary embolism during the COVID-19 pandemic. J Nucl Med. 2020;61(5):630-1.

Weg J, Froehlich J. Ultrasonography of leg veins in patients suspected of having pulmonary embolism. Ann Intern Med. 1998;128(3):243.

Lim W, Le Gal G, Bates SM, Righini M, Haramati LB, Lang E, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: Diagnosis of venous thromboembolism. Blood Adv. 2018;2(22):3226-56.

Liu Q, Wang R, Qu G, Wang Y, Liu P, Zhu Y, et al. Gross examination report of a COVID-19 death autopsy. Fa Yi Xue Za Zhi 2020;36:21-3

Maiese A, Manetti AC, Russa RL, Paolo MD, Turillazzi E, Frati P, et al. Autopsy findings in COVID-19-related deaths: A literature review. Forensic Sci Med Pathol. 2021;17(2): 279–296.

Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27(2):taaa021.

Vikas Aggarwal V, Nicolais CD, Lee A, Bashir R. Acute management of pulmonary embolism [Internet]. 2017. Available from: https://www.acc.org/latest-incardiology/articles/2017/10/23/12/12/acute-management-of-pulmonary-embolism

Bikdeli B, Madhavan M, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020;75(23):2950-73.

Tritschler T, Kraaijpoel N, Le Gal G, Wells P. Venous thromboembolism: Advances in diagnosis and treatment. JAMA. 2018; 320(15):1583-94.

Wang J, Hajizadeh N, Moore EE, McIntyre RC, Moore PK, Veress LA, et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J Thromb Haemost. 2020;10.1111/jth.14828.

Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-9.

Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19.2020;18(5):1023-6.

Kreuziger LB, Lee A, Garcia D, Cuker A, Cushman M, DeSancho M, et al. COVID-19 and VTE/anticoagulation: Frequently asked questions [Internet]. COVID-19 and VTE-Anticoagulation - Hematology.org. 2021 [cited 2021 Feb 23]. Available from: https://www.hematology.org/covid-19/covid-19-and-vte-anticoagulation

Lee AYY, deSancho M, Pai Menaka, Huisman M, Moll S, Ageno W, et al. COVID-19 and pulmonary embolism: Frequently asked questions [Internet]. COVID-19 and VTE-Anticoagulation – Hematology.org. 2021 [cited 2021 Feb 23]. Available from: https://www.hematology.org/covid-19/covid-19-and-pulmonary-embolism

Hunt B, Retter A, McClintock C. Practical guidance for the prevention of thrombosis and management of coagulopathy and disseminated intravascular coagulation of patients infected with COVID-19. 2020. Thrombosis UK. 2020

Oudkerk M, Büller H, Kuijpers D, van Es N, Oudkerk SF, McLoud T, et al. Diagnosis, prevention, and treatment of thromboembolic complications in COVID-19: Report of the National Institute for Public Health of the Netherlands. 2020;297(1):216-22.

Diterbitkan

2021-12-01

Cara Mengutip

Tan, C. (2021). Trombosis pada Pasien COVID-19. Cermin Dunia Kedokteran, 48(12), 684–691. https://doi.org/10.55175/cdk.v48i12.156

Terbitan

Bagian

Articles