Medium Chain Triglyceride (MCT) Ketogenic Diet and Its Role in Epilepsy
DOI:
https://doi.org/10.55175/cdk.v46i10.414Kata Kunci:
Anaplerosis, epilepsy, ketosis, medium chain triglyceride (MCT)Abstrak
Brain mainly uses glucose as its energy sources; it can also use ketone bodies and free fatty acids for oxidative fuel. Decreased energy production in seizure is commonly caused by the lack of TCA cycle intermediates and acetyl-CoA. MCT diet induces ketosis and facilitates anaplerosis to provide intermediate substrates that can be used to support brain metabolism. MCT diet has been shown to help control seizure.
Otak menggunakan glukosa sebagai sumber energi. Otak juga dapat menggunakan badan keton dan asam lemak bebas sebagai sumber energi oksidatif. Penurunan produksi energi dalam kasus kejang sering disebabkan karena kekurangan zat antara dan asetil-KoA dalam siklus asam trikarboksilat (siklus Krebs). Diet MCT dapat menginduksi ketosis dan anaplerosis untuk menghasilkan substrat antara dalam siklus Krebs yang dapat dipakai untuk menopang metabolisme di otak. Diet MCT terbukti dapat membantu mengontrol kejang.
Unduhan
Referensi
Ebert D, Haller RG, Walton M.E. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2003;23(13):5928 –35
Valencia IM, Good LB, Ma Q, Malloy CR, Pascual JM. Heptanoate as a neural fuel: Energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain. J Cerebral Blood Flow Metabolism. 2013;33(2):175-83 doi:10.1038/jcbfm.2012.151
Zhang Y, Kuang Y, Xu K, Harris D, Lee Z, LaManna J, et al. Ketosis proportionately spares glucose utilization in brain. J Cerebral Blood Flow Metabolism. 2013;33(8):1307-11. doi:10.1038/jcbfm.2013.87
Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J. Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci. 1987;18(4):551-61
Borges K, Sonnewald U. Triheptanoin -A medium chain triglyceride with odd chain fatty acids: A new anaplerotic anticonvulsant treatment? Epilepsy Res. 2012;100:239-44
Kovac S, Abramov AY, Walker MC. Energy depletion in seizures: Anaplerosis as a strategy for future therapies. Neuropharmacol. 2013;69:96-104
Liu YM, Wang HS. Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets. Biomed J. 2013;36(1):9-15
Sirven J, Whedon B, Caplan D, Liporace J, Glosser D, O’Dwyer J, et al. The ketogenic diet for intractable epilepsy in adults: preliminary results. Epilepsia 1999;40(12):1721-6
Wlaz, P, Socala K, Nieoczyma D, Łuszczki JJ, Zarnowska I, Zarnowski T, et al. Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacol. 2012;62:1882-9
Willis S, Stoll J, Sweetman L, Borges K. Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobiol Dis. 2010;40(3):565–72. doi:10.1016/j.nbd.2010.07.017
Kim TH, Borges K, Petrou S, Reida CA. Triheptanoin reduces seizure susceptibility in a syndrome-specific mouse model of generalized epilepsy. Epilepsy Res. 2013;103:101-5
Marten B, Pfeuffer M, Schrezenmeir J. Medium-chain triglycerides. Internat Dairy J. 2006;16:1374–82
Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, et al. The ketogenic diet for the treatment of childhood epilepsy: A randomised controlled trial. Lancet Neurol. 2008;7(6):500-6
Bach AC, Babayan VK. Medium chain triglycerides: An update. Am J Clin Nutr. 1982;36:950-62
Roe CR,·Mochel F. Anaplerotic diet therapy in inherited metabolic disease: Therapeutic potential. J Inherited Metabolic Dis. 2006;29:332–4
Nugent S, Courchesne-Loyer A, St-Pierre V, Vandenberghe C, Castellano CA, Cunnane SC. Ketones and brain development: Implications for correcting deteriorating brain glucose metabolism during aging. OCL. 2016;23(1):110
Kunau WH, Dommes V, Schulz H. β oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: A century of continued progress. Prog Lipid Res. 1995;34(4): 267-342
Schulz H. Beta oxidation of fatty acids. Biochimica et Biophvsica Acta. Elsevier Science Publisher; 1991
Kasuya F, Tatsuki T, Ohta M, Kawai Y, Igarashi K. Purification, characterization, and mass spectrometric sequencing of a medium chain acyl-CoA synthetase from mouse liver mitochondria and comparisons with the homologues of rat and bovine. Protein Expression and Purification 2006;4:405–14
Wanders RJA, Ruiter JPN, Ijlst L, Waterham HR, Houten HM. The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonata screening results. J Inherit Metab Dis. 2010;33:479–94
Tacconi MT. Neuronal death: Is there a role for astrocytes? Neurochem Res. 1998;23(5): 759-65
Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metabolism. 2011. Elsevier Inc. doi:10.1016/j.cmet.2011.08.016
DeVivo DC, Malas KL, Leckie MP. Starvation and seizures. Observation on the electroconvulsive threshold and cerebral metabolism of the starved adult rat. Arch Neurol. 1975;32:755-60
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2019 https://creativecommons.org/licenses/by-nc/4.0/
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.