Clinical Implications of Gut-Lung Axis in Systemic Chemotherapy for Lung Cancer

Literature Review

Authors

  • Indry Agatha T.C.Hillers Regional Public Hospital, Flores, East Nusa Tenggara
  • Widiya Hari Kurnia Internship, dr. Suyudi General Hospital, Lamongan, East Java
  • Mirna Nastiti Louqi Machfud Ngudi Waluyo Wlingi Regional Public Hospital, Blitar, East Java
  • Stella Pangestika Batara Guru Public Hospital, South Sulawesi
  • Candra Muhammad Yusuf Hidayatullah Bonang 2 Public Health Department
  • Arya Marganda Simanjuntak Research Assistant, Pulmonary and Critical Medicine Division, Department of Internal Medicine, Faculty of Medicine, Universitas Riau, Arifin Achmad General Hospital,Pekanbaru, Riau; Clinical Clerkship, Faculty of Medicine, Universitas Riau, Arifin Achmad General Hospital, Pekanbaru, Riau, Indonesia

DOI:

https://doi.org/10.55175/cdk.v53i02.1699

Keywords:

Chemotherapy, gut-lung axis, lung cancer, microbiota

Abstract

Lung cancer incidence continues to increase globally, with an estimated mortality rate of 18% worldwide. Current management strategies focus on early screening, early treatment, and palliative care. However, more fundamental approaches are needed to improve treatment outcomes. The gut-lung axis has emerged as an important factor in lung cancer pathophysiology, as it plays a role in pulmonary immune defense and is influenced by changes in gut and lung microbiota. Alterations in microbial composition have been observed in lung cancer patients and may contribute to disease progression. Systemic chemotherapy, while targeting cancer cells, also exerts systemic effects that may disrupt gut and lung microbiota, leading to dysbiosis. These changes may influence treatment response, immune modulation, and clinical outcomes in lung cancer patients. This narrative review explores the role of the gut-lung axis in lung cancer and examines the impact of systemic chemotherapy on gut and lung microbiota. Understanding the interaction between chemotherapy and the gut-lung axis may provide insight into potential adjuvant strategies to improve treatment effectiveness and patient quality of life.

Downloads

Download data is not yet available.

References

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

Thandra KC, Barsouk A, Saginala K, Aluru JS, Barsouk A. Epidemiology of lung cancer. Contemp Oncol (Pozn). 2021;25(1):45-52. https://doi.org/10.5114/wo.2021.103829.

PDQ Screening and Prevention Editorial Board. Lung cancer prevention (PDQ®): health professional version. In: PDQ Cancer Information Summaries [Internet]. 2002 [cited 2024 Oct 4]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK66017/.

Midthun DE. Early detection of lung cancer. F1000Res. 2016;5(F1000 Faculty Rev):739. https://doi.org/10.12688/f1000research.7313.1.

Haryati H, Rahmawaty D, Wanahari TA. Implementing palliative and end-of-life care in lung cancer: when to start? J Respirasi. 2023;9(1):64–71. https://doi.org/10.20473/jr.v9-I.1.2023.64-71.

Indari A, Rasmin M, Syam AF. Gut-lung axis. Respir Sci. 2023;3(2):132–43. https://doi.org/10.36497/respirsci.v3i2.68.

Zhang D, Li S, Wang N, Tan HY, Zhang Z, Feng Y. The cross-talk between gut microbiota and lungs in common lung diseases. Front Microbiol. 2020;11:301. https://doi.org/10.3389/fmicb.2020.00301.

Wang J, Li F, Tian Z. Role of microbiota on lung homeostasis and diseases. Sci China Life Sci. 2017;60(12):1407–15. https://doi.org/10.1007/s11427-017-9151-1.

Zhao Y, Liu Y, Li S, Peng Z, Liu X, Chen J, et al. Role of lung and gut microbiota on lung cancer pathogenesis. J Cancer Res Clin Oncol. 2021;147(8):2177–86. https://doi.org/10.1007/s00432-021-03644-0.

Jin Y, Dong H, Xia L, Yang Y, Zhu Y, Shen Y, et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J Thorac Oncol. 2019;14(8):1378–89. doi: 10.1016/j.jtho.2019.04.007.

Daillere R, Vetizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 2016;45(4):931–43. doi: 10.1016/j.immuni.2016.09.009.

Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011;184(8):957–63. https://doi.org/10.1164/rccm.201104-0655OC.

Apostolou P, Tsantsaridou A, Papasotiriou I, Toloudi M, Chatziioannou M, Giamouzis G. Bacterial and fungal microflora in surgically removed lung cancer samples. J Cardiothorac Surg. 2011;6:137. https://doi.org/10.1186/1749-8090-6-137.

Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013;187(10):1067–75. doi: 10.1164/rccm.201210-1913OC.

Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578. doi: 10.1371/journal.pone.0008578.

Beck JM, Young VB, Huffnagle GB. The microbiome of the lung. Transl Res. 2012;160(4):258–66. doi: 10.1016/j.trsl.2012.02.005.

O’Dwyer DN, Dickson RP, Moore BB. The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol. 2016;196(12):4839–47. doi: 10.4049/jimmunol.1600279.

Marsland BJ, Gollwitzer ES. Host-microorganism interactions in lung diseases. Nat Rev Immunol. 2014;14(12):827–35. doi: 10.1038/nri3769.

Erb Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB. Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep. 2013;3:2191. doi: 10.1038/srep02191.

Lloyd CM, Marsland BJ. Lung homeostasis: influence of age, microbes, and the immune system. Immunity. 2017;46(4):549–61. doi: 10.1038/srep02191.

Zeng W, Zhao C, Yu M, Chen H, Pan Y, Wang Y, et al. Alterations of lung microbiota in patients with non-small cell lung cancer. Bioengineered. 2022;13(3):6665–77. doi: 10.1080/21655979.2022.2045843.

Eftekhari R, de Lima SG, Liu Y, Mihara K, Saifeddine M, Noorbakhsh F, et al. Microenvironment proteinases, proteinase-activated receptor regulation, cancer, and inflammation. Biol Chem. 2018;399(9):1023–39. doi: 10.1515/hsz-2018-0001.

Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, et al. Regulation of intestinal permeability: the role of proteases. World J Gastroenterol. 2017;23(12):2106–23. doi: 10.3748/wjg.v23.i12.2106.

Gowing SD, Chow SC, Cools-Lartigue JJ, Chen CB, Najmeh S, Jiang HY, et al. Gram-positive pneumonia augments non-small cell lung cancer metastasis via host toll-like receptor 2 activation. Int J Cancer. 2017;141(3):561–71. doi: 10.1002/ijc.30734.

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. doi: 10.1158/2159-8290.CD-21-1059.

Sun Y, Wen M, Liu Y, Wang Y, Jing P, Gu Z, et al. The human microbiome: a promising target for lung cancer treatment. Front Immunol. 2023;14:1091165. doi: 10.3389/fimmu.2023.1091165.

Tsay JCJ, Wu BG, Badri MH, Clemente JC, Shen N, Meyn P, et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med. 2018;198(9):1188–98. doi: 10.1164/rccm.201710-2118OC.

Liu NN, Ma Q, Ge Y, Yi CX, Wei LQ, Tan JC, et al. Microbiome dysbiosis in lung cancer: from composition to therapy. NPJ Precis Oncol. 2020;4(1):33. doi: 10.1038/s41698-020-00138-z.

Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieers G, Guery B, et al. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 2020;10:9. doi: 10.3389/fcimb.2020.00009.

Liu X, Cheng Y, Zang D, Zhang M, Li X, Liu D, et al. The role of gut microbiota in lung cancer: from carcinogenesis to immunotherapy. Front Oncol. 2021;11:720842. doi: 10.3389/fonc.2021.720842.

Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12(4):843–50. doi: 10.1038/s41385-019-0160-6.

Xia Q, Chen G, Ren Y, Zheng T, Shen C, Li M, et al. Investigating efficacy of “microbiota modulation of the gut-lung axis” combined with chemotherapy in patients with advanced NSCLC: study protocol for a multicenter, prospective, double blind, placebo-controlled, randomized trial. BMC Cancer. 2021;21(1):721. doi: 10.1186/s12885-021-08448-6.

Zhang H, Xu Z. Gut-lung axis: role of the gut microbiota in non-small cell lung cancer immunotherapy. Front Oncol. 2023;13:1257515. doi: 10.3389/fonc.2023.1257515.

Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. doi: 10.1126/science.aan4236.

Secombe KR, Coller JK, Gibson RJ, Wardill HR, Bowen JM. The bidirectional interaction of the gut microbiome and the innate immune system: implications for chemotherapy-induced gastrointestinal toxicity. Int J Cancer. 2019;144(10):2365–76. doi: 10.1002/ijc.31836.

Green R, Horn H, Erickson JM. Eating experiences of children and adolescents with chemotherapy-related nausea and mucositis. J Pediatr Oncol Nurs. 2010;27(4):209–16. doi: 10.1177/1043454209360779.

Costa RGF, Caro PL, De Matos-Neto EM, Lima JDCC, Radloff K, Alves MJ, et al. Cancer cachexia induces morphological and inflammatory changes in the intestinal mucosa. J Cachexia Sarcopenia Muscle. 2019;10(5):1116–27. doi: 10.1002/jcsm.12449.

Roggiani S, Mengoli M, Conti G, Fabbrini M, Brigidi P, Barone M, et al. Gut microbiota resilience and recovery after anticancer chemotherapy. Microbiome Res Rep. 2023;2(3):16. doi: 10.20517/mrr.2022.23.

Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. doi: 10.1038/nrgastro.2017.75.

Klunemann M, Andrejev S, Blasche S, Mateus A, Phapale P, Devendran S, et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature. 2021;597(7877):533–8. doi: 10.1038/s41586-021-03891-8.

Guarino MPL, Altomare A, Emerenziani S, Di Rosa C, Ribolsi M, Balestrieri P, et al. Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults. Nutrients. 2020;12(4):1037. doi: 10.3390/nu12041037.

van Zyl WF, Deane SM, Dicks LMT. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes. 2020;12(1):1831339. doi: 10.1080/19490976.2020.1831339.

Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet 2019;394(10196):420–31. doi: 10.1016/S0140-6736(19)31266-8.

Ren S, Feng L, Liu H, Mao Y, Yu Z. Gut microbiome affects the response to immunotherapy in non-small cell lung cancer. Thorac Cancer. 2024;15(14):1149–63. doi: 10.1111/1759-7714.15303.

Montassier E, Gastinne T, Vangay P, Al-Ghalith GA, Bruley Des Varannes S, Massart S, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther. 2015;42(5):515–28. doi: 10.1111/apt.13302.

Tian Z, Liu Y, Zhu D, Cao B, Cui M. Changes in intestinal flora and serum metabolites pre- and post-antitumor drug therapy in patients with non-small cell lung cancer. J Clin Med. 2024;13(2):529. doi: 10.3390/jcm13020529.

Carbone C, Piro G, Di Noia V, D’Argento E, Vita E, Ferrara MG, et al. Lung and gut microbiota as potential hidden drivers of immunotherapy efficacy in lung cancer. Mediators Inflamm. 2019;2019:1–10. doi: 10.1155/2019/7652014.

Taplitz RA, Kennedy EB, Flowers CR. Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update summary. J Oncol Pract. 2018;14(11):692–95. doi: 10.1200/JCO.18.00374.

Ciernikova S, Sevcikova A, Drgona L, Mego M. Modulating the gut microbiota by probiotics, prebiotics, postbiotics, and fecal microbiota transplantation: an emerging trend in cancer patient care. Biochim Biophys Acta Rev Cancer. 2023;1878(6):188990. doi: 10.1016/j.bbcan.2023.188990.

Liu J, Liu C, Yue J. Radiotherapy and the gut microbiome: facts and fiction. Radiat Oncol. 2021;16(1):9. doi: 10.1186/s13014-020-01735-9.

Kim YS, Kim J, Park SJ. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe. 2015;33:1–7. doi: 10.1016/j.anaerobe.2015.01.004.

Downloads

Published

10-02-2026

How to Cite

Agatha, I., Kurnia, W. H., Machfud, M. N. L., Pangestika, S., Hidayatullah, C. M. Y., & Simanjuntak, A. M. (2026). Clinical Implications of Gut-Lung Axis in Systemic Chemotherapy for Lung Cancer: Literature Review. Cermin Dunia Kedokteran, 53(02), 127–136. https://doi.org/10.55175/cdk.v53i02.1699